ImageVerifierCode 换一换
格式:PDF , 页数:41 ,大小:1.66MB ,
资源ID:684924      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-684924.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(DIN ISO 76 Bb 1-1994 Rolling bearings - Static load ratings - Explanatory notes to ISO 76 identical with ISO TR 10657 1991《滚动轴承 静态承载量 ISO 281 1 1977 的说明注释 等同采用 ISO TR 10657 1991》.pdf)为本站会员(ownview251)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

DIN ISO 76 Bb 1-1994 Rolling bearings - Static load ratings - Explanatory notes to ISO 76 identical with ISO TR 10657 1991《滚动轴承 静态承载量 ISO 281 1 1977 的说明注释 等同采用 ISO TR 10657 1991》.pdf

1、Wlzlager Statische Tragzahlen Erklrungen zu IS0 76 Identisch mit ISOTTR 1 O 657 : 1991 ICs 21.100.20 Deskriptoren: Wlzlager, Tragzahl Rolling bearings; Static load ratings; Explanatory notes on IS0 76; Identical with ISO/TR 10 657 : 1991 Beiblatt 1 DIN IS0 76 zu Dieses Beiblatt enthlt Informationen

2、zu DIN IS0 76 : 1987, jedoch keine zustzlichen genormten Festlegungen. Der Internationale Technische Bericht ISO/TR 10 657 : 1991 “Erklrungen zu IS0 76“, ist unverndert in dieses Beiblatt ber- nommen worden. Nationales Vorwort Das vorliegende Beiblatt entspricht dem Internationalen Technischen Beric

3、ht ISOITR 1 O 657 : 1991. Er gibt die Hintergrundinformationen hinsichtlich der Herleitung von Formeln und Faktoren und erklrt die Berechnungsverfahren der statischen Tragzahlen nach IS0 76 : 1987. Der Technische Bericht ISO/TR 10 657 : 1991 wurde im ISOITC 4/SC 8 er- arbeitet und auf Beschlu des AW

4、L/UA 8 als Beiblatt 1 zu DIN IS0 76 fr Deutschland bernommen. Internationale Patentklassifikation FI 6C O1 9/00 FI 6C O1 9/24 FI 6C O1 9/26 FI 6C O1 9/28 FI 6C O1 9/30 FI 6C O1 9/34 FI 6C O1 9/36 FI 6C O1 9/38 FI 6C O1 9/49 Fortsetzung Seite 2 bis 41 Arbeitsausschu Wlzlager (AWL) im DIN Deutsches In

5、stitut fr Normung e. V. Q DIN Deutsches Institut fur Normung e.V. Jede Art der Vervielfaltigung, auch auszugsweise, Alleinverkaut der Normen durch Beuth Verlag GmbH. 10772 Berlin nur mit Genehmigung des DIN Deutsches Institut fur Normung e.V., Berlin, gestattet. Ref. Nr. DIN IS0 76 Bbl 1 : 7994-09 P

6、reisgr. 14 Vem.-NK 2214 Seite 2 DIN IS0 76 Bbl1 1994-09 Deutsche bersetzung Wlzlager Statische Tragzahlen Erklrungen zu IS0 76 1 2 2.1 2.2 2.3 3 3.1 3.1.1 3.1.2 3.2 3.3 3.4 4 4.1 4.1.1 Inhalt Seite Einfhrung 3 Vorgeschichte 3 ISO/R 76-1958 . 3 ISO76-1978 . 4 IS0 76-1987 . 4 Statische Tragzahlen . 6

7、Statische radiale Tragzahl Cor fr Radial-Kugellager 8 Radial-Rillenkugellager und Schrgkugellager 8 Pendelkugellager 1 O Statische axiale Tragzahl Coa fr Axial-Kugellager . 1 1 Statische radiale Tragzahl Cor fr Radial-Rollenlager 12 Statische axiale Tragzahl Co, fr Axial-Rollenlager . 13 Statische q

8、uivalente Belastung . 13 Theoretische quivalente radiale Belastung Por fr Radiallager 13 Einreihige Radiallager und Radial- Rillenkugellager (Nenn-Berhrungs- winkel di Ja = Ja(;. 1 J i - (1 - cos$)ItdS ) 2.E (4-1) (4 - 2) mit DIN1 DIN IS0 76 BEIBLATT 3 94 m 2794442 0433485 962 m 1,0834 1,0711 1,0286

9、 Seite 14 DIN IS0 76 Bbl 1 1994-09 1,6709 1,8102 1,9638 t = 3/2 fr Punktberhrung = 1,l fr Linienberhrung $o = Hlfte des belasteten Bogens E = Lastzonenparameter, der den Bereich der belasteten Zone angibt. Unter der Annahme, daB das Lager nach dem Einbau kein Radialspiel hat, ist die statische quiva

10、lente radiale Belastung Po, = F, bei radialer Verschiebung der Ringe (E = 0,s). Die Gleichung (4- 1) geht dann in die folgende Form ber 0,8474 0,6464 0,4382 por 2 cos aJr(O, 5) Qmaz = 2,3541 2,7703 3,1948 und es gelten die folgenden Beziehungen (4-3) (4 - 4) Die nach den Gleichungen (4-3) und (4-4)

11、berechneten Werte fr einen konstanten Nenn-Berhrungswinkel a sind in der Tabelle 4.1 angegeben. GemB der mit der Tabelle gegebenen funktionalen Beziehung kann die statische quivalente radiale Belastung POT fr gegebene Werte von F, Fa und a entnommen werden. Die Beziehung zwischen Fr/P, und Fa cot a/

12、Fo, ist auBerdem in Bild 4.1 dargestellt. Tabelle 4.1: Werte fr F,/Po, und Fa cot a/Po+ in Abhngigkeit von E F, tan a/ Fa fr einreihige Radiallager Rollenlager Kugellager Fr tan a/ Fa 0,8225 0,7835 0,7427 0,6995 0,6529 0,6000 0,4538 0,3080 0,1850 0,0831 O 1 1,0558 1,0949 1,1183 1,1255 1,1128 1,0003

13、0,8165 0,5852 0,3108 O 1,2158 1,3475 1,4743 1,5988 1,7239 1,8547 2,2043 2,6512 3,1637 3,7400 4.3706 F, tan a/ Fa 0,7940 0,7482 0,7000 0,6484 0,5917 0,5238 0,3600 0,2333 0,1372 0,0611 O Fa cot alPm 1,2595 1,3993 1,0746 1.5353 0,2218 1 3,6317 1 O 4,0766 DINI DIN IS0 7b BEIBLATT I 94 = 2794442 0433486

14、8T9 Seite 15 DIN IS0 76 Bbl 1 : 1994-09 Fa cot a/ POT Bild 4.1 : Theoretische Beziehung zwischen radialer und axialer Bela- stung bezogen auf die statische quivalente Belastung fr ein- reihige Radiallager Die Werte in Tabelle 4.1 und Bild 4.1 wurden unter der Annahme eines konstanten Berhrungswinkel

15、s berechnet bzw. grafisch dargestellt. Jedoch ist die vorstehende Be- ziehung auch nherungsweise fr Kugellager (Schrgkugellager usw.) giilt ig, wenn sich der Berhrungswinkel mit der Belastung ndert; cot a wird nach 12 durch cot a nach folgender Gleichung (4 - 5) ersetzt (4 - 5) Die GrBe c in der obi

16、gen Gleichung ist eine Druckkonstante, die vom Elastizittsmodul und dem Verhltnis 2r/D, abhngt, r ist der Krmmungsradius des Laufbahnquerschnit- tes und D, ist der Kugeldurchmesser (siehe Tabelle 4.2). DIN1 DIN IS0 7b BEIBLATT 3 94 2794442 0433487 735 Seite 16 DIN IS0 76 Bbl 1 : 1994-09 Tabelle 4.2:

17、 Werte fr c und c/(2r/D, - 1) C 2lDw-I in N, mm 0,01323 0,01253 c - lo3 Einheiten 1,98 2,Ol C I in kgf, mm I 0,06062 I 0,05743 2, 1 DU- 1 0,05440 0,03783 In der Tabelle 4.3 sind als Beispiel fr 2r/D, = 1,035 die Werte von cot a fr verschiedene Werte von Fa/ZD$ und Q von 15“ bis 45“ angegeben. Tabell

18、e 4.3: Beispiele fr Werte von cot d fr Schrg-Kugellager Fa /Z DW a 2,793 2,322 1,929 1,613 1,356 1,146 0,969 1,691 1,511 1,337 1,171 1,018 * Einheiten in N und mm. Co, = foZDW cos a und F/ZDi = (Fu/Co,)fo cos cy Fr ein- und zweireihige Radial-Rillenkugellager wurden die Werte der Tabelle 4.4 aus den

19、 Gleichungen (4 - 3), (4 - 4) sowie der folgenden Gleichung (4 - 6) nach 12 ermittelt mit i = Anzahl der Kugelreihen Z = Anzahl der Kugeln in einer Reihe. Fr gegebene Werte von F, und Fa kann mit der Gleichung (4 - 7) berschlgig der Wert von cy berechnet werden. AnschlieBend findet man in der Tabell

20、e 4.4 die Werte fr E und Fo/Po, oder Fu cot a/Pm und dann kann zuletzt Po, bestimmt werden. DIN1 DIN IS0 7b BEIBLATT II 94 W 2794442 0433488 671 m Fa/iZD$ 0,5 1 2 5 tan a 0,2110 0,2510 0,2985 0,3753 Seite 17 DIN IS0 76 Bbl 1 : 1994-09 10 0,4463 Tabelle 4.4: Werte fr FT/PoT und Fa cot s/Po,. in Abhng

21、igkeit von F,. tan d/Fa fr Radial-Rillenkugellager F,. tan d/Fa 1,1432 0,9055 0,7859 0,7013 O ,6280 0,4632 0,3105 0,1855 0,0831 O 00 FTIPO,. 1 1,0558 1,0949 1,1183 1,1255 1,1128 1,0003 0,8165 0,5852 0,3108 O Fa cot d/ Po, O 0,9238 1,2096 1,423 1 1,6051 1,7721 2,1600 2,6035 3,1548 4,3706 3,7377 Als B

22、eispiel sind fr 2r/D, = 1,035 die Werte von tana fr verschiedene Werte von F,/i2Dw2 in der Tabelle 4.5 angegeben. Tabelle 4.5: Beispiel fr Berhrungswinkel-Werte von Radial-Rillenkugel- lagern * Einheiten N und mm. Fa/iZDW2 = (Fa/Co,.)fo. Desweiteren ist die Beziehung zwischen F,./Po,. und Fa cot s/P

23、o,. im Bild 4.2 dargestellt. DIN1 DIN IS0 76 BEIBLATT 1 94 m 2794442 0433489 508 = Seite 18 DIN IS0 76 Bbl 1 : 1994-09 1.2 170 0,5 5 0.6 e 00 0.2 c Bild 4.2: Theoretische Beziehung zwischen radialer und axialer Bela- stung bezogen auf die statische quivalente Belastung fr Radial- Rillenkugellager 4.

24、1.2 Zweireihige Radiallager Unter der Annahme, daB sich beide Lagerringe eines zweireihigen Radiallagers mit den Reihen I und II bei gleichzeitiger radialer und axialer Belastung parallel verschieben Fr Fz + FZZ Fa = FaI - Falz ist die grfite Wlzkrperbelastung fr jede Reihe (die Anzahl der Rollkrper

25、 je Reihe ist DIN3 DIN IS0 76 BEIBLATT II 94 2794442 0433490 22T H F,. tan a/ Fa 2,3908 1,2101 0,8229 0,6340 0,5238 O0 0,3600 0,2333 0,1372 0,0611 O Seite 19 DIN IS0 76 Bbl 1 1994-09 F, / Po, 1 O 0,8217 0,3437 0,7022 0,5803 0,6187 0,7518 0,5586 0,8811 0,5143 0,9819 Fa cot a/ Po, 0,4237 1,1771 0,3232

26、 1,3852 0,2191 1,5974 0,1109 1,8158 O 2,0383 2) durch. die folgenden Gleichungen nach 111 gegeben Fr - F ZcosaJ, - ZsinaJ, Qmax = Qmaxii = Qmaxi (a)t (4 - 8) (4-9) Weist das Lager kein radiales Lagerspiel auf, so ist die statische quivalente Belastung Po, = F, bei radialer Verschiebung der Lagerring

27、e (EI = EII = O, 5) und por 2 cos aJ,(O, 5) Qmaz = d.h., in diesem Fall gelten die Gleichungen (4- 3) und (4-4). Die nach diesen Gleichun- gen errechneten Werte fr einen konstanten Berhrungswinkel Q sind in der Tabelle 4.6 angegeben. GemB dem in dieser Tabelle gegebenen funktionalen Zusammenhang kan

28、n die statische quivalente Belastung Po, fr gegebene Werte von F, Fa und a entnommen werden. Die Beziehung zwischen F,/P, und Fa cot a/ Po, ist im Bild 4.3 dargestellt. Des- weiteren kann fr zweireihige Radial-Rillenkugellager Po, annhernd mit a aus Gleichung (4-5) anstelle mit a aus der Tabelle 4.6

29、 berechnet werden, wenn sich der Berhrungs- winke1 mit der Belastung ndert. Tabelle 4.6: Werte fr F,/Po,. und Fa cot a/P0, in Abhngigkeit von F, tan a/ Fa fr zweireihige Radiallager F, tan CY/ Fa O0 2,0465 1,0916 0,8005 0,6713 0,6000 0,4538 0,3080 0,1850 0.0831 O Kugellager F, /por 1 0,7797 0,6634 0

30、,6026 0,5721 0,5564 0,5001 0,4083 0,2926 0,1554 O Fa cot a/ P, O 0,3810 0,6078 0,7528 0,8523 0,9274 1,3256 1,5819 1,8699 1,1021 2,1850 DINI DIN IS0 7b BEIBLATT II 94 2794442 0433491 Lbb Seite 20 DIN IS0 76 Bbl 1 : 1994-09 0.2 O Bild 4.3: Theoretische Beziehung zwischen radialer und axialer Bela- stu

31、ng bezogen auf die statische quivalente Belastung fr zweireihige Radiallager 4.2 Theoretische statische quivalente axiale Belastung Po, fur Axiallager 4.2.1 Einseitig wirkende Axiallager Einseitig wirkende Axiallager, die radiale Belastungen bertragen knnen, sind als einrei- hige Radiallager mit ein

32、em groBen Berhrungswinkel zu betrachten. Wenn sich die Lagerscheiben in axialer Richtung verschieben, dann wird in der fr ein- reihige Radiallager mit konstantem Berhrungswinkel gltigen Gleichung (4 - 4) E = 00 und Ja = 1 und weiterhin die statische quivalente Belastung Po, = Fa; setzt man diese Wer

33、te ein, so erhlt man die Beziehung Po, = Po, cot cyJ,(O, 5) . DINI DIN IS0 76 BEIBLATT L 94 2774442 0433492 UT2 Seite 21 DIN IS0 76 Bbl 1 : 1994-09 Durch Einsetzen dieser Gleichung in die Gleichungen (4 - 3) und (4 - 4) entstehen folgende Gleichungen F, tan cy Po, = Jr 7 - Ja Fa por - (4- 10) (4- 11

34、) Die Tabelle 4.7 ergibt sich aus den Gleichungen (4- 10) und (4- 11). GemB dem funk- tionalen Zusammenhang in dieser Tabelle erhlt man die statische quivalente axiale Belastung Po, fr gegebene Werte von F, Fa und und cy. Die Beziehung zwischen Fa/Po, und F, tan a/Po, ist in Bild 4.4 dargestellt. 0.

35、sc O, 25 0,2c J 1,25 in der Tabelle 4.1 und der Teillinie BC in Bild 4.1). Die folgende Gleichung ergibt sich aus der Gleichung (4 - 13) P, =0,5-Fr+0,2*tF, . (4- 14) Wenn F, = 0,4cot CYF, ist, dann wird der Term auf der rechten Seite der Gleichung (4- 14) gleich F, und fr die Teillinie AB in Fr 0,4c

36、ot aF, (Bild 4.7) ist P, = F, . Wenn in einem zweireihigen Radiallager mit der Wlzkrperanzahl 2 pro Reihe nur eine Reihe belastet ist und alle Wlzkrper Z der Belastung unterworfen sind (in bereinstim- mung mit E 2 1 in der Tabelle 4.6 und der Teillinie BC im Bild 4.3) dann erhlt man die folgende Gle

37、ichung nach denselben berlegungen wie fr einreihige Lager Fa 2,5 F, - - 5 * Po, 2.2cosa Zsina + cosa * (4- 15) DBY1 DIN IS0 76 BEIBLATT 1 94 2794442 0431498 510 Seite 27 DIN IS0 76 Bbl 1 : 1994-09 Bild 4.6: Wlzkrperbelastung in einem einreihigen Radiallager Daraus folgt Po,. = F, + 0,4 * cot aFa . (

38、4- 16) Diese Gleichung ist gltig fr F, 5 O, 4 cot aF, (Teillinie BICI im Bild 4.7) und P, = 2F, (Punkt Bl)-fr F,. = 0,4cot und es ist zu bercksichtigen, daB die statische Tragfhigkeit auf- grund von Fert igungsfehlern abnimmt, da der entstehende Axialschlag zu einer Axialbela- stung im Radiallager f

39、hrt. Damit nehmen durch die Einfhrung eines Minderungsfaktors (1 - IC, sin a) die Formeln fr Po, folgende Form an O,*COSCU o, 2 cos a sin a( 1 - ko sin a) Fa (4-19) einreihige Lager : Po, = F, + cos cr DINh DIN IS0 76 BEIBLATT 1 94 m 2794442 0431499 457 m Seite 28 DIN IS0 76 Bbl 1 : 1994-09 O Fa cot

40、 a/ Pol. Bild 4.7: Beziehung zwischen radialen und axialen Belastungen bezo- gen auf die statische quivalente Belastung fr Radiallager cos a O,.COSCW zweireihige Lager : Po, = - Fa - (4-20) cos a F, + sin UJ(I - IC, sin a) Es gibt eine experimentelle Untersuchung von A. PALMGREN ber die GrBe der Wlz

41、- krperbelastungen unter kombinierter Belastung in einreihigen Radial-Rillenkugellagern 14. Bild 48 zeigt seine Ergebnisse mit F,/P, in Abhngigkeit von Fa cot cy/P,. Anmerkung: Diese Versuche wurden mit Lagern mit D, = 16,5 mm, r =0,53D, und Z = 12 ausgefhrt, die a-Werte fr die Ver- suchswerte in Bi

42、ld 4.8 beruhen auf der folgenden Gleichung (die Einheit fr Fa ist kgf) (4 - 21) Zieht man eine Gerade AC1 unterhalb (auf der sicheren Seite) aller Versuchspunkte in Bild 4.8, dann folgt diese der Beziehung Por = F, + O, 2 * cot 1,0), dann ergibt sich hierfr die folgende Gleichung Po, = O, 575 F, + O

43、, 25 cot aF, . (4- 23) 4.4.2 Axiallager Da einseitig und zweiseitig wirkende Axiallager mit einem Berhrungswinkel a # O“ wie ein- und zweireihige Radiallager mit einem groBen konstanten Berhrungswinkel be- handelt werden, gelten die Gleichungen (4- 14) und (4- 16) sinngema fr die statische quivalent

44、e Belastung von Axiallagern. Mit dem Verhltnis: statische radiale Trag- zahl/statische axiale Tragzahl = O, 2 cot a oder O, 4 cot a ergibt sich nach Dividieren beider Seiten der Gleichungen (4 - 14) und (4- 16) durch O, 2 cot a bzw. O, 4 cot a die Gleichung Po, = 2,5 . F, tan + Fa . (4- 24) DIN1 DIN

45、 IS0 76 BEIBLATT 1 94 = 2794442 043l1501 935 Fa / CO;. tan CY Y, = O, 25 praktische Werte fr Y, cot o Seite 30 DIN IS0 76 Bbl 1 : 1994-09 0,05 0,l 092 075 1 0,2216 0,2636 0,3135 0,3941 0,4687 1,128 0,948 0,797 0,634 0,533 099 0,s 036 075 1,1 4.5 Statischer Radialfaktor X, und statischer Axialfaktor

46、Y, 4.5.1 Radiallager 4.5.1.1 Radial-Rillenkugellager Fr Radial-Rillenkugellager gilt nach Gleichung (4 - 22) fr die statische quivalente ra- diale Belastung Jedoch gilt bei Verwendung eines Berhrungswinkels a x 15“ in Verbindung mit X,=l , Y,=0,2.cotCY . (4 - 25) (1) Schmiegung 2r/D, = 1,035 und axi

47、ale Belastung Fa = O, lCo7 (relativ gering auf (2) 2r/D, = 1,035 und Fa/i2DW2 sino = 0,5 kgf = 4,9033 N/mm2 der sicheren Seite) oder Y, = O, 2 3,732 = O, 7464 N O, 75 . Die Faktoren Xo = 1 und ergeben sich mit C, = 1,24iZDi (kgf) die &-Werte, die fr verschiedene Fa/C,- Werte in der Tabelle 4.14 angegeben sind. Tabelle 4.14: Werte fr den Faktor Yo von Radial-Rillenkugellagern * Einheiten in kgf und mm.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1