ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:60.50KB ,
资源ID:751455      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-751455.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(FORD WSS-M1A358-A1-2016 STEEL SHEET BORON TREATED ALUMINIZED HIGH STRENGTH COLD FORMABLE (NORTH AMERICA APPLICATIONS) TO BE USED WITH FORD WSS-M99P1111-A .pdf)为本站会员(terrorscript155)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

FORD WSS-M1A358-A1-2016 STEEL SHEET BORON TREATED ALUMINIZED HIGH STRENGTH COLD FORMABLE (NORTH AMERICA APPLICATIONS) TO BE USED WITH FORD WSS-M99P1111-A .pdf

1、 ENGINEERING MATERIAL SPECIFICATION Date Action Revisions Rev 01 2016 07 29 N Status No longer in strategy D. Rhuno, NA 2007 02 08 Activated D. Jordan Copyright 2016, Ford Global Technologies, LLC Page 1 of 5 STEEL, SHEET, BORON TREATED, ALUMINIZED, HIGH STRENGTH, WSS-M1A358-A1 COLD FORMABLE (NORTH

2、AMERICA APPLICATIONS) NOT TO BE USED FOR NEW DESIGN 1. SCOPE The material defined by this specification is a fully killed, fine grained, hot dip aluminized, high strength, boron treated steel. Component manufacture shall be by pre-forming and subsequent heat treatment (austenitization and quenching)

3、 with or without additional hot forming/die quenching (press hardening). 2. APPLICATION This specification was released originally for A and B pillar reinforcements, where a high strength-to-weight ratio is required. Mechanical properties of the fully processed part shall meet the requirements of WS

4、S-M99P39-A1/A4 or shall be listed in detail on the individual part Engineering Drawing. Mechanical properties of the fully processed part are a function of the specific press hardening process selected for part manufacture. The complete part fabrication process shall be outlined in detail in the Pro

5、cess Flow Diagram/PFMEA and maintained in accordance with the documented Control Plan. 2.1 LIMITATIONS Due to the hardenability response of this material, individual welding schedules must be developed for each application (see also para. 3.7.) Forming of the blank prior to austenitization is expect

6、ed for materials supplied to this specification Austenitization by induction heating is not allowed. Stress relief annealing or hydrogen bake-out processes (per WSS-M99A3-A) may be necessary for certain process paths and shall be described in detail in the part Suppliers Control Plan. De-scaling par

7、ts by acid pickling is not allowed. 3. REQUIREMENTS 3.1 STANDARD REQUIREMENTS FOR PRODUCTION MATERIALS Material suppliers and part producers must conform to the Companys Standard Requirements For Production Materials (WSS-M99P1111-A). ENGINEERING MATERIAL SPECIFICATION WSS-M1A358-A1 Copyright 2016,

8、Ford Global Technologies, LLC Page 2 of 5 3.2 DIMENSIONS AND DIMENSIONAL TOLERANCES 3.2.1 Thickness and Thickness Tolerances The material thickness specified on the Engineering Drawing shall be nominal and shall include both the substrate thickness and the coating thickness. The nominal incoming mat

9、erial thickness in each area of parts made with multiple-thickness blanks (e.g., tailor welded or tailor rolled) shall be identified on the Engineering Drawing. Specified Nominal Thickness (mm) Tolerance (mm) 0.8 1.19 +/- 0.07 1.2 1.49 +/- 0.08 1.5 1.99 +/- 0.09 2.0 2.59 +/- 0.11 2.6 3.0 +/- 0.14 Re

10、fer to WSS-M99P39-A1/A4 for the allowable thickness reduction that results from the press hardening process. 3.2.2 Other Dimensional Tolerances Length, width, flatness, camber, and mass tolerances for the material as delivered by the steel supplier are defined by the relevant national standards. 3.3

11、 MANUFACTURING/PROCESS REQUIREMENTS Final material properties in the part are achieved by heat treatment. Forming of the blank prior to austenitization is expected for materials supplied to this specification. Austenitization by induction heating is not allowed. Quenching shall be accomplished by an

12、y method (e.g., coolant - jacketed die, direct water contact) that achieves the required final part properties. The specific method shall be described in detail in the part Suppliers Control Plan. The microstructure of the steel in the final part shall be effectively 100% tempered martensite with a

13、small amount of bainite likely and allowed. Stress relief annealing or hydrogen bake-out processes (per WSS-M99A3-A) may be necessary for certain process paths and shall be described in detail in the part Suppliers Control Plan. De-scaling parts by acid pickling is not allowed. ENGINEERING MATERIAL

14、SPECIFICATION WSS-M1A358-A1 Copyright 2016, Ford Global Technologies, LLC Page 3 of 5 3.4 CHEMICAL COMPOSITION (check analysis, weight percent) C 0.25 max Mn 1.40 max P 0.030 max S 0.015 max Si 0.50 max Cr 0.35 max Mo 0.35 max B 0.0050 max N 0.009 max Al * Ti * Ca * Cu, Ni, Sn, Nb, V * * Sufficient

15、to fully kill the steel. * Sufficient to stabilize nitrogen. * Sufficient for sulfide inclusion shape control * No requirement. All listed elements shall be reported for initial material source approval and shall be listed on the steel Suppliers Control Plan if added intentionally. The upper and low

16、er limits for each of the controlled elements shall be established by the Supplier and included in the steel Suppliers Control Plan. Sulfide inclusion shape control is required and shall be accomplished by calcium additions. 3.5 MECHANICAL PROPERTIES (as delivered by steel supplier) (Transverse test

17、 specimens, 50 mm gage length) (ISO 6892/ASTM E 8M/EN 10002/JFS A 2001) Yield Strength (MPa) 550 max % Elongation 10 min Mechanical properties in the fully processed part shall comply with WSS-M99P39-A1/A4 and any other requirements listed on the Engineering Drawing, CAD file, or related documents.

18、Note: Material for parts that receive no pre-austenitization deformation processing beyond that normally associated with blanking is exempt from this paragraph. 3.6 FORMABILITY The quality level of the steel supplied to fabricate a specific component shall be negotiated between the part supplier and

19、 the steel supplier. Steel cleanliness may involve the use of a mutually agreed upon referee method. Acceptance of subsequent orders by the part supplier for a given component at the agreed upon quality level implies that all components contain steel of a comparable quality level and will form compo

20、nents satisfactorily as defined by the part supplier. ENGINEERING MATERIAL SPECIFICATION WSS-M1A358-A1 Copyright 2016, Ford Global Technologies, LLC Page 4 of 5 3.7 WELDABILITY The carbon equivalent of material supplied to this specification will always exceed 0.21 wt.%. Consequently, to demonstrate

21、 acceptable weldability of the material and part in the specific application for the material source approval process, the WELDABILITY paragraph of WSS-M1P39-A1/A4 shall be completed Note: This material shall be subjected to the entire applicable deformation/heat treatment process, including subsequ

22、ent thermomechanical treatment (e.g., stress relief annealing) or surface treatment (e.g., shot blasting or oiling) so that the proper surface and bulk characteristics will be represented for weldability testing. 3.8 SURFACE FINISH AND APPEARANCE These specifications define the surface appearance as

23、 Class 3 (unexposed). The material shall be used only for parts of the vehicle that are concealed during use, per ES-F75B-11007-(*). (*) latest level 3.8.1 Aluminum Coating The incoming steel shall have been coated by a continuous hot dip aluminizing process. Aluminizing of individual blanks or part

24、s is not allowed. The material shall be uniformly coated and free from defects such as blisters, flux, and uncoated spots. Aluminum coating Type 1 per ASTM A 463, with the composition shown below, is required. The as-coated thickness of the aluminized layer is to be 25 +/- 7 microns in any measured

25、location (except cut edges) as determined in metallographic cross section. Si 5 11 wt.% Fe 4.5 wt.% max. Other impurities 0.5 wt.% max. Al balance 3.8.2 Coating Bend Test (FLTM BI 009-05) No flaking of the as-coated aluminized coating is allowed when tested with the following modifications: - The be

26、nding die is to be two times the thickness of the steel panel. - Flaking of the coating within 6 mm of the edge shall be disregarded. 3.9 PAINTABILITY A suitable paintability (exposure to cleaning, pretreatment, and e-coat processes) test protocol shall be agreed between the component supplier and t

27、he relevant Company activity (e.g., Global Paint Engineering) prior to commencement of the material source approval process. Note: This material shall be subjected to the entire applicable deformation/heat treatment process, including subsequent thermomechanical treatment (e.g., stress relief anneal

28、ing) or surface treatment (e.g., shot blasting or oiling) so that the proper surface and bulk characteristics will be represented for paintability testing. ENGINEERING MATERIAL SPECIFICATION WSS-M1A358-A1 Copyright 2016, Ford Global Technologies, LLC Page 5 of 5 3.10 FINISHED PART REQUIREMENTS Mecha

29、nical properties in the fully processed part shall comply with WSS-M99P39-A1/A4 and any other requirements listed on the Engineering Drawing. 4. GENERAL INFORMATION The information given below is provided for clarification and assistance in meeting the requirements of this specification. 4.1 INITIAL

30、 SUPPLIER APPROVAL BY FORD For initial approval, refer to AVP-T113-018 (Sheet Metal Material Specification/Source Approval Process) in the North America METS EKB. Upon approval, the materials will be added to the Engineering Material Approved Source List (ASL). 4.2 REFERENCE DOCUMENTS The reference

31、documents are: ASTM A 463 Specification for Steel Sheet, Aluminum-Coated, by the Hot-Dip Process ASTM A 568M Specification for Steel, Sheet, Carbon, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, General Requirements for ASTM E 8M Test Methods of Tension Testing of Metallic Materials EN 1

32、0002 Tensile Testing of Metallic Materials ES-F75B-11007-(*) Specification Sheet Metal Surfaces and Edges FLTM BI 009-05 Bend Test for Coating Adhesion ISO 6892 Metallic Materials Tensile Testing at Ambient Temperature WSS-M99P39-A1/A4 Performance, Steel, Sheet, Boron Treated, Aluminized, High Stren

33、gth WSS-M99A3-A Embrittlement Avoidance WSS-M99P9999-A1 Restricted Substance Management Standard WSS-M99P1111-A Standard Requirements for Production Materials (* latest level) 4.3 METHOD OF SPECIFYING The specification on the Engineering Drawing, CAD file, or related documents shall include the base

34、 steel, the performance requirements, and the surface classification. e.g., Steel to WSS-M1A358-A1, press hardened to WSS-M99P39A-A2, tensile test specimens located and oriented as shown, 1.5 mm nominal thickness, Class 3. 4.4 TYPICAL CHEMICAL COMPOSITION (WT.%) (see 3.4) Ti 0.03 0.05 (Greater than 3.4 x the N level) Al 0.02 0.06 Ca 0.001 0.005

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1