1、 ENGINEERING MATERIAL SPECIFICATION Date Action Revisions Rev 01 2016 07 29 N Status No longer in strategy D. Rhuno, NA 2007 02 08 Activated D. Jordan Copyright 2016, Ford Global Technologies, LLC Page 1 of 5 STEEL, SHEET, BORON TREATED, ALUMINIZED, HIGH STRENGTH, WSS-M1A358-A1 COLD FORMABLE (NORTH
2、AMERICA APPLICATIONS) NOT TO BE USED FOR NEW DESIGN 1. SCOPE The material defined by this specification is a fully killed, fine grained, hot dip aluminized, high strength, boron treated steel. Component manufacture shall be by pre-forming and subsequent heat treatment (austenitization and quenching)
3、 with or without additional hot forming/die quenching (press hardening). 2. APPLICATION This specification was released originally for A and B pillar reinforcements, where a high strength-to-weight ratio is required. Mechanical properties of the fully processed part shall meet the requirements of WS
4、S-M99P39-A1/A4 or shall be listed in detail on the individual part Engineering Drawing. Mechanical properties of the fully processed part are a function of the specific press hardening process selected for part manufacture. The complete part fabrication process shall be outlined in detail in the Pro
5、cess Flow Diagram/PFMEA and maintained in accordance with the documented Control Plan. 2.1 LIMITATIONS Due to the hardenability response of this material, individual welding schedules must be developed for each application (see also para. 3.7.) Forming of the blank prior to austenitization is expect
6、ed for materials supplied to this specification Austenitization by induction heating is not allowed. Stress relief annealing or hydrogen bake-out processes (per WSS-M99A3-A) may be necessary for certain process paths and shall be described in detail in the part Suppliers Control Plan. De-scaling par
7、ts by acid pickling is not allowed. 3. REQUIREMENTS 3.1 STANDARD REQUIREMENTS FOR PRODUCTION MATERIALS Material suppliers and part producers must conform to the Companys Standard Requirements For Production Materials (WSS-M99P1111-A). ENGINEERING MATERIAL SPECIFICATION WSS-M1A358-A1 Copyright 2016,
8、Ford Global Technologies, LLC Page 2 of 5 3.2 DIMENSIONS AND DIMENSIONAL TOLERANCES 3.2.1 Thickness and Thickness Tolerances The material thickness specified on the Engineering Drawing shall be nominal and shall include both the substrate thickness and the coating thickness. The nominal incoming mat
9、erial thickness in each area of parts made with multiple-thickness blanks (e.g., tailor welded or tailor rolled) shall be identified on the Engineering Drawing. Specified Nominal Thickness (mm) Tolerance (mm) 0.8 1.19 +/- 0.07 1.2 1.49 +/- 0.08 1.5 1.99 +/- 0.09 2.0 2.59 +/- 0.11 2.6 3.0 +/- 0.14 Re
10、fer to WSS-M99P39-A1/A4 for the allowable thickness reduction that results from the press hardening process. 3.2.2 Other Dimensional Tolerances Length, width, flatness, camber, and mass tolerances for the material as delivered by the steel supplier are defined by the relevant national standards. 3.3
11、 MANUFACTURING/PROCESS REQUIREMENTS Final material properties in the part are achieved by heat treatment. Forming of the blank prior to austenitization is expected for materials supplied to this specification. Austenitization by induction heating is not allowed. Quenching shall be accomplished by an
12、y method (e.g., coolant - jacketed die, direct water contact) that achieves the required final part properties. The specific method shall be described in detail in the part Suppliers Control Plan. The microstructure of the steel in the final part shall be effectively 100% tempered martensite with a
13、small amount of bainite likely and allowed. Stress relief annealing or hydrogen bake-out processes (per WSS-M99A3-A) may be necessary for certain process paths and shall be described in detail in the part Suppliers Control Plan. De-scaling parts by acid pickling is not allowed. ENGINEERING MATERIAL
14、SPECIFICATION WSS-M1A358-A1 Copyright 2016, Ford Global Technologies, LLC Page 3 of 5 3.4 CHEMICAL COMPOSITION (check analysis, weight percent) C 0.25 max Mn 1.40 max P 0.030 max S 0.015 max Si 0.50 max Cr 0.35 max Mo 0.35 max B 0.0050 max N 0.009 max Al * Ti * Ca * Cu, Ni, Sn, Nb, V * * Sufficient
15、to fully kill the steel. * Sufficient to stabilize nitrogen. * Sufficient for sulfide inclusion shape control * No requirement. All listed elements shall be reported for initial material source approval and shall be listed on the steel Suppliers Control Plan if added intentionally. The upper and low
16、er limits for each of the controlled elements shall be established by the Supplier and included in the steel Suppliers Control Plan. Sulfide inclusion shape control is required and shall be accomplished by calcium additions. 3.5 MECHANICAL PROPERTIES (as delivered by steel supplier) (Transverse test
17、 specimens, 50 mm gage length) (ISO 6892/ASTM E 8M/EN 10002/JFS A 2001) Yield Strength (MPa) 550 max % Elongation 10 min Mechanical properties in the fully processed part shall comply with WSS-M99P39-A1/A4 and any other requirements listed on the Engineering Drawing, CAD file, or related documents.
18、Note: Material for parts that receive no pre-austenitization deformation processing beyond that normally associated with blanking is exempt from this paragraph. 3.6 FORMABILITY The quality level of the steel supplied to fabricate a specific component shall be negotiated between the part supplier and
19、 the steel supplier. Steel cleanliness may involve the use of a mutually agreed upon referee method. Acceptance of subsequent orders by the part supplier for a given component at the agreed upon quality level implies that all components contain steel of a comparable quality level and will form compo
20、nents satisfactorily as defined by the part supplier. ENGINEERING MATERIAL SPECIFICATION WSS-M1A358-A1 Copyright 2016, Ford Global Technologies, LLC Page 4 of 5 3.7 WELDABILITY The carbon equivalent of material supplied to this specification will always exceed 0.21 wt.%. Consequently, to demonstrate
21、 acceptable weldability of the material and part in the specific application for the material source approval process, the WELDABILITY paragraph of WSS-M1P39-A1/A4 shall be completed Note: This material shall be subjected to the entire applicable deformation/heat treatment process, including subsequ
22、ent thermomechanical treatment (e.g., stress relief annealing) or surface treatment (e.g., shot blasting or oiling) so that the proper surface and bulk characteristics will be represented for weldability testing. 3.8 SURFACE FINISH AND APPEARANCE These specifications define the surface appearance as
23、 Class 3 (unexposed). The material shall be used only for parts of the vehicle that are concealed during use, per ES-F75B-11007-(*). (*) latest level 3.8.1 Aluminum Coating The incoming steel shall have been coated by a continuous hot dip aluminizing process. Aluminizing of individual blanks or part
24、s is not allowed. The material shall be uniformly coated and free from defects such as blisters, flux, and uncoated spots. Aluminum coating Type 1 per ASTM A 463, with the composition shown below, is required. The as-coated thickness of the aluminized layer is to be 25 +/- 7 microns in any measured
25、location (except cut edges) as determined in metallographic cross section. Si 5 11 wt.% Fe 4.5 wt.% max. Other impurities 0.5 wt.% max. Al balance 3.8.2 Coating Bend Test (FLTM BI 009-05) No flaking of the as-coated aluminized coating is allowed when tested with the following modifications: - The be
26、nding die is to be two times the thickness of the steel panel. - Flaking of the coating within 6 mm of the edge shall be disregarded. 3.9 PAINTABILITY A suitable paintability (exposure to cleaning, pretreatment, and e-coat processes) test protocol shall be agreed between the component supplier and t
27、he relevant Company activity (e.g., Global Paint Engineering) prior to commencement of the material source approval process. Note: This material shall be subjected to the entire applicable deformation/heat treatment process, including subsequent thermomechanical treatment (e.g., stress relief anneal
28、ing) or surface treatment (e.g., shot blasting or oiling) so that the proper surface and bulk characteristics will be represented for paintability testing. ENGINEERING MATERIAL SPECIFICATION WSS-M1A358-A1 Copyright 2016, Ford Global Technologies, LLC Page 5 of 5 3.10 FINISHED PART REQUIREMENTS Mecha
29、nical properties in the fully processed part shall comply with WSS-M99P39-A1/A4 and any other requirements listed on the Engineering Drawing. 4. GENERAL INFORMATION The information given below is provided for clarification and assistance in meeting the requirements of this specification. 4.1 INITIAL
30、 SUPPLIER APPROVAL BY FORD For initial approval, refer to AVP-T113-018 (Sheet Metal Material Specification/Source Approval Process) in the North America METS EKB. Upon approval, the materials will be added to the Engineering Material Approved Source List (ASL). 4.2 REFERENCE DOCUMENTS The reference
31、documents are: ASTM A 463 Specification for Steel Sheet, Aluminum-Coated, by the Hot-Dip Process ASTM A 568M Specification for Steel, Sheet, Carbon, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, General Requirements for ASTM E 8M Test Methods of Tension Testing of Metallic Materials EN 1
32、0002 Tensile Testing of Metallic Materials ES-F75B-11007-(*) Specification Sheet Metal Surfaces and Edges FLTM BI 009-05 Bend Test for Coating Adhesion ISO 6892 Metallic Materials Tensile Testing at Ambient Temperature WSS-M99P39-A1/A4 Performance, Steel, Sheet, Boron Treated, Aluminized, High Stren
33、gth WSS-M99A3-A Embrittlement Avoidance WSS-M99P9999-A1 Restricted Substance Management Standard WSS-M99P1111-A Standard Requirements for Production Materials (* latest level) 4.3 METHOD OF SPECIFYING The specification on the Engineering Drawing, CAD file, or related documents shall include the base
34、 steel, the performance requirements, and the surface classification. e.g., Steel to WSS-M1A358-A1, press hardened to WSS-M99P39A-A2, tensile test specimens located and oriented as shown, 1.5 mm nominal thickness, Class 3. 4.4 TYPICAL CHEMICAL COMPOSITION (WT.%) (see 3.4) Ti 0.03 0.05 (Greater than 3.4 x the N level) Al 0.02 0.06 Ca 0.001 0.005