ImageVerifierCode 换一换
格式:PDF , 页数:190 ,大小:2.76MB ,
资源ID:807157      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-807157.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(JEDEC JESD250-2017 GRAPHICS DOUBLE DATA RATE (GDDR6) SGRAM STANDARD.pdf)为本站会员(progressking105)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

JEDEC JESD250-2017 GRAPHICS DOUBLE DATA RATE (GDDR6) SGRAM STANDARD.pdf

1、JEDEC SOLID STATE TECHNOLOGY ASSOCIATIONJESD250JULY 2017JEDECSTANDARDGRAPHICS DOUBLE DATA RATE(GDDR6) SGRAM STANDARD NOTICEJEDEC standards and publications contain material that has been prepared, reviewed, andapproved through the JEDEC Board of Directors level and subsequently reviewed and approved

2、by the JEDEC legal counsel.JEDEC standards and publications are designed to serve the public interest through eliminatingmisunderstandings between manufacturers and purchasers, facilitating interchangeability andimprovement of products, and assisting the purchaser in selecting and obtaining with min

3、imumdelay the proper product for use by those other than JEDEC members, whether the standard is tobe used either domestically or internationally.JEDEC standards and publications are adopted without regard to whether or not their adoptionmay involve patents or articles, materials, or processes. By su

4、ch action JEDEC does not assumeany liability to any patent owner, nor does it assume any obligation whatever to parties adoptingthe JEDEC standards or publications.The information included in JEDEC standards and publications represents a sound approach toproduct specification and application, princi

5、pally from the solid state device manufacturerviewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard orpublication may be further processed and ultimately become an ANSI standard.No claims to be in conformance with this standard may be made unless all requirements sta

6、ted in the standard are met.Inquiries, comments, and suggestions relative to the content of this JEDEC standard orpublication should be addressed to JEDEC at the address below, or call (703) 907-7559 orwww.jedec.orgPublished byJEDEC Solid State Technology Association 20153103 North 10th StreetSuite

7、240 SouthArlington, VA 22201-2107This document may be downloaded free of charge; however JEDEC retains thecopyright on this material. By downloading this file the individual agrees not tocharge for or resell the resulting material.PRICE: Please refer to www.jedec.orgPrinted in the U.S.A.All rights r

8、eservedPLEASE!DONT VIOLATETHELAW!This document is copyrighted by the JEDEC Solid State Technology Associationand may not be reproduced without permission.Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For information, contact:JE

9、DEC Solid State Technology Association3103 North 10th Street, Suite 240SArlington, Virginia 22201or call (703) 907-7559JEDEC Standard No. 250-i-Contents1 SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10、. . . . . . . . . . . . . . . . . . . . . 12 GDDR6 SGRAM STANDARD OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.1 FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.3 DEFINITION

12、 OF SIGNAL STATE TERMINOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.4 DEFINITION OF CLOCKING TERMINOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13、 . . . . . . . . . . . . . . . . . . 42.5 CLOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 INITIALIZATION . . . . . . . . . . . . . . .

14、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.1 POWER-UP SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15、 . . . . . . . . . . . . 83.2 INITIALIZATION WITH STABLE POWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.3 VENDOR ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17、 . . . . 154.1 COMMAND and ADDRESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2 COMMAND ADDRESS BUS INVERSION (CABI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.3 BANK GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 TRAINING .

19、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.1 INTERFACE TRAINING SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20、. . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.2 COMMAND ADDRESS TRAINING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205.3 WCK2CK TRAINING . . . . . . . . . . . . . . . . . .

21、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.4 READ TRAINING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22、 . . . . . . . . . . . . . . . . . . . . . . . . . . . 325.5 WRITE TRAINING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 MODE REGISTERS . . . . . . . . . .

23、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406.1 MODE REGISTER 0 (MR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24、 . . . . . . . . . . . . . . . 426.2 MODE REGISTER 1 (MR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446.3 MODE REGISTER 2 (MR2) . . . . . . . . . . . . . . . . . . . . .

25、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466.4 MODE REGISTER 3 (MR3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26、. . . . . . . . . . . . . . . . 486.5 MODE REGISTER 4 (MR4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506.6 MODE REGISTER 5 (MR5). . . . . . . . . . . . . . . . . . . .

27、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526.7 MODE REGISTER 6 (MR6) accesses start at a selected location and consists of a total of sixteen data words. Accesses begin with the registration of an Activate c

28、ommand, which is then followed by a Read, Write (WOM) or masked Write (WDM, WSM) command.The row and bank address to be accessed is registered coincident with the Activate command. The address bits registered coincident with the Read, Write or masked Write command are used to select the bank and the

29、 starting column location for the burst access.This specification includes all features and functionality required for GDDR6 SGRAM devices. In many cases the GDDR6 specification describes the behavior of a single channel. JEDEC Standard No. 250Page 42.3 DEFINITION OF SIGNAL STATE TERMINOLOGYGDDR6 SG

30、RAM will be operated in both ODT Enable (terminated) and ODT Disable (unterminated) modes. For highest data rates it is recommended to operate in the ODT Enable mode. ODT Disable mode is designed to reduce power and may operate at reduced data rates. There exist situations where ODT Enable mode can

31、not be guaranteed for a short period of time, i.e., during power up.Following are four terminologies defined for the state of a device (GDDR6 SGRAM or controller) signal during operation. The state of the bus will be determined by the combination of the device signal connected to the bus in the syst

32、em. For example, in GDDR6 it is possible for the SGRAM pin to be tristated while the controller signal is HIGH or ODT. In both cases the bus would be HIGH if the ODT is enabled. For details on the devices signals and their function see Sections 9.1 and 9.2.Device pin signal level: HIGH: A device sig

33、nal is driving the Logic “1” state. LOW: A device signal is driving the Logic “0” state. Hi-Z: A device signal is tristate. ODT: A device signal terminates with ODT setting, which could be terminating or tristate depending on Mode Register setting.Bus signal level: HIGH: One device on bus is HIGH an

34、d all other devices on bus are either ODT or Hi-Z. The voltage level on the bus would be nominally VDDQ. LOW: One device on bus is Low and all other devices on bus are either ODT or Hi-Z. The voltage level on the bus would be nominally VOL(DC) if ODT was enabled, or VSSif Hi-Z. Hi-Z: All devices on

35、bus are Hi-Z. The voltage level on bus is undefined as the bus is floating. ODT: At least one device on bus is ODT and all others are Hi-Z. The voltage level on the bus would be nominally VDDQ.2.4 DEFINITION OF CLOCKING TERMINOLOGY Data refers to the signal being clocked (e.g. DQ by WCK and CA by CK

36、 Half rate: clock is running at half of the data rate (e.g. WCK 4GHz and DQ at 8Gbps, or CK 1GHz and CA at 2Gbps) Quarter rate: clock is running at a quarter of the data rate (e.g. WCK 2GHz and DQ at 8Gbps) Eighth rate: clock is running at one eighth of the data rate (e.g. WCK internal 1GHz and DQ a

37、t 8Gbps) DDR (Double Data Rate): complement to half rate, referring to data relative to clock QDR (Quad Data Rate): complement to quarter rate, referring to data relative to clock ODR (Octa Data Rate): complement to eighth rate, referring to data relative to clockJEDEC Standard No. 250Page 52.5 CLOC

38、KINGThe GDDR6 SGRAM supports two operating modes for WCK frequency which differ in the DQ/DBI_n pin to WCK clock frequency ratio. The GDDR6 SGRAM supports DDR and QDR operating modes for WCK frequency which differ in the DQ/DBI_n to WCK clock frequency ratio.Figure 1 illustrates the difference betwe

39、en a DDR WCK and a QDR WCK. Figure 60 illustrates a WRITE command with a DDR WCK clock while Figure 61 illustrates a WRITE command with a QDR WCK clock. Figure 74 illustrates a READ command with DDR WCK clocking and Figure 75 illustrates a READ command with QDR WCK clocking. Other figures in the spe

40、cification are shown only with the DDR WCK for simplicity unless otherwise noted. GDDR6 SGRAM also supports 2 granularities for the WCK data clock in the device. GDDR6 SGRAM devices can be designed with either a WCK/byte or a WCK/word. The ball-out has provisions for a WCK/byte but also supports WCK

41、/word with the unused WCK balls as NC; the host must turn the unused WCK off.The DRAM info bits for WCK Granularity, WCK Frequency and Internal WCK can be read by the host during the initialization process to determine the WCK architecture for the device and for devices that support multiple frequen

42、cies, MR2 OP11 allows for the mode to be set. For the frequencies for each mode see Table 68.In both WCK QDR and DDR modes the GDDR6 device operates from a differential clock CK_t and CK_c. Command and Address (CA) are registered at every rising and falling CK edge. For both WCK DDR and QDR ratio th

43、e GDDR6 device can support either a full data rate EDC or a half data rate EDC. See EDC section for more details.A rising CK (or WCK) edge is defined as the crossing of the positive edge of CK_t (or WCK_t) and the negative edge of CK_c (or WCK_c). A falling CK (or WCK) edge is defined as the crossin

44、g of the negative edge of CK_t (or WCK_t) and the positive edge of CK_c (or WCK_c).Table 1 Example Clock and Interface Signal Frequency RelationshipPIN DDR WCK QDR WCK UNITCK_t, CK_c 1.5 1.5 GHzCA 3.0 3.0 Gbps/pinWCK_t, WCK_c 6.0 3.0 GHzDQ, DBI_n 12.0 12.0 Gbps/pinEDC 6.0 12.0 6.0 12.0 Gbps/pinJEDEC

45、 Standard No. 250Page 6CK_tCK_cCADATA *1WCK_tWCK_cf (i.e. 1.75 GHz)2f (i.e. 3.5 Gbps)4f (i.e. 7.0 GHz)8f (i.e. 14.0 Gbps)CK_tCK_cCADATA *1f (i.e. 1.75 GHz)2f (i.e. 3.5 Gbps)2f (i.e. 3.5 GHz)8f (i.e. 14.0 Gbps)WCK_tWCK_cDDR WCKQDR WCK2.5 CLOCKING (contd)Figure 1 GDDR6 Clocking and Interface Relations

46、hipJEDEC Standard No. 250Page 72.5 CLOCKING (contd)Clock PhaseOscillatorQDCA9:0CMD/ADD DRAM QDQBDATADQearly/lateReceiverD QWCKintDQDRAM PLL/DLLQDDQPhase detector/corelogic early/late fromFor 8 data bitsControllerGDDR6 SGRAMPLL optionalclockData Tx/RxWCK_t/(6 GHz orCK_t/CK_c(1.5 GHz)ADD/CMD sampled b

47、y CK_t/CK_c as DDRADD/CMD centered with CK_t/CK_ccalibration dataPhase accumulatorControllerClock PhaseController(12 Gbps)corecore(3 GHz or 1.5GHz)D QWCK2CKAlignmentTo EDC pin/2 orWCK_c(3 Gbps)/43 GHz)Figure 2 Block Diagram of an example clock systemJEDEC Standard No. 250Page 83 INITIALIZATION3.1 PO

48、WER-UP SEQUENCEGDDR6 SGRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation. The Mode Registers do not have RESET default values, except for CABI, CA termination, and the EDC hold pattern. If the mode regi

49、sters are not set during the initialization sequence, it may lead to unspecified operation.1) Apply power to VPP. Apply power to VDDat the same time or after power is applied to VPP. Apply power to VDDQat the same time or after power is applied to VDD. VPPmust be equal to or higher than VDDat all times the device is powered up except during power-off sequence.2) Apply VREFCat same time or after power is applied to VDDQ, or pull VREFC LOW to select internal VREFC.3) The voltage levels on all signal balls must be less than or equal to VDDand VDDQon one side and must

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1