ImageVerifierCode 换一换
格式:PDF , 页数:20 ,大小:323.95KB ,
资源ID:807294      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-807294.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(JEDEC JESD8-20A-2009 POD15 - 1 5 V Pseudo Open Drain I O.pdf)为本站会员(李朗)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

JEDEC JESD8-20A-2009 POD15 - 1 5 V Pseudo Open Drain I O.pdf

1、JEDEC SOLID STATE TECHNOLOGY ASSOCIATIONJESD820AOCTOBER 2009JEDECSTANDARDPOD15 1.5V Pseudo Open Drain I/O(Revision of JESD8-20, December 2006) NOTICEJEDEC standards and publications contain material that has been prepared, reviewed, andapproved through the JEDEC Board of Directors level and subseque

2、ntly reviewed and approvedby the JEDEC legal counsel.JEDEC standards and publications are designed to serve the public interest through eliminatingmisunderstandings between manufacturers and purchasers, facilitating interchangeability andimprovement of products, and assisting the purchaser in select

3、ing and obtaining with minimumdelay the proper product for use by those other than JEDEC members, whether the standard is tobe used either domestically or internationally.JEDEC standards and publications are adopted without regard to whether or not their adoptionmay involve patents or articles, mate

4、rials, or processes. By such action JEDEC does not assumeany liability to any patent owner, nor does it assume any obligation whatever to parties adoptingthe JEDEC standards or publications.The information included in JEDEC standards and publications represents a sound approach toproduct specificati

5、on and application, principally from the solid state device manufacturerviewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard orpublication may be further processed and ultimately become an ANSI standard.No claims to be in conformance with this standard may be made u

6、nless all requirements stated in the standard are met.Inquiries, comments, and suggestions relative to the content of this JEDEC standard orpublication should be addressed to JEDEC at the address below, or call (703) 9077559 orwww.jedec.orgPublished byJEDEC Solid State Technology Association 2009310

7、3 North 10th StreetSuite 240 SouthArlington, VA 222012107This document may be downloaded free of charge; however JEDEC retains thecopyright on this material. By downloading this file the individual agrees not tocharge for or resell the resulting material.PRICE: Please refer to www.jedec.orgPrinted i

8、n the U.S.A.All rights reservedPLEASE!DONT VIOLATETHELAW!This document is copyrighted by the JEDEC Solid State Technology Association and may not bereproduced without permission.Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For

9、 information, contact:JEDEC Solid State Technology Association3103 North 10th Street, Suite 240 SouthArlington, Virginia 22201-2107JEDEC Standard No, 820APage 1POD15 1.5V PSEUDO OPEN DRAIN I/O(From JEDEC Board ballot JCB0971, formulated under the cognizance of the JC16 Committee on Voltage Level and

10、 Electrical Iterface.)1 ScopeThis standard defines the dc and ac singleended (data) and differential (clock) operating conditions, I/O impedances, and the termination and calibration scheme for 1.5 V Pseudo Open Drain I/Os. The 1.5 V Pseudo Open Drain interface, also known as POD15, is primarily use

11、d to communicate with GDDR4 and GDDR5 SGRAM devices.JEDEC Standard No. 820APage 22 Operating conditions NOTE 1 GDDR4 and GDDD5 SGRAMs are designed to tolerate PCB designs with separate VDD and VDDQ power regulators.NOTE 2 AC noise in the system is estimated at 50mV pkpk for the purpose of DRAM desig

12、n.NOTE 3 Source of Reference Voltage and control of Reference Voltage for DQ and DBI# pins is determined by VREFD, Half VREFD, Auto VREFD, VREFD MERGE and VREFD Offsets mode registers.NOTE 4 VREFD Offsets are not supported with VREFD2.NOTE 5 External VREFC is to be provided by the controller as ther

13、e is no other alternative supply.NOTE 6 DQ/DBI# input slew rate must be greater than or equal to 3V/ns. The slew rate is measured between VREFD crossing and VIHD(AC) or VILD(AC) or VREFD2 crossing and VIHD2(AC) or VILD2(AC).NOTE 7 ADR/CMD input slew rate must be greater than or equal to 3V/ns. The s

14、lew rate is measured between VREFC crossing and VIHA(AC) or VILA(AC).NOTE 8 VIHX and VILX define the voltage levels for the receiver that detects x32 or x16 mode with RESET# going High.NOTE 9 Applicable to GDDR4 or other interface with a single VREF for the device.NOTE 10 Applicable to GDDR5 or othe

15、r interface with multiple VREF pins and levels.Table 1 DC Operating ConditionsPOD15Parameter Symbol Min Typ Max Unit NoteDevice Supply Voltage VDD 1.455 1.5 1.545 V 1Output Supply Voltage VDDQ 1.455 1.5 1.545 V 1Reference Voltage VREF 0.69 * VDDQ 0.71 * VDDQ V 2, 9Reference Voltage for DQ and DBI# p

16、ins VREFD 0.69 * VDDQ 0.71 * VDDQ V 2, 3, 10Reference Voltage for DQ and DBI# pins VREFD2 0.49 * VDDQ 0.51 * VDDQ V2, 3, 4, 10External Reference Voltage for address and commandVREFC 0.69 * VDDQ 0.71 * VDDQ V 5, 10DC Input Logic HIGH Voltage VIH (DC) VREF + 0.12 V 9DC Input Logic LOW Voltage VIL (DC)

17、 VREF 0.12 V 9DC Input Logic HIGH Voltage for address and commandVIHA (DC) VREFC + 0.15 V 10DC Input Logic LOW Voltage for address and commandVILA (DC) VREFC 0.15 V 10DC Input Logic HIGH Voltage for DQ and DBI# pins with VREFDVIHD (DC) VREFD + 0.10 V 10DC Input Logic LOW Voltage for DQ and DBI# pins

18、 with VREFDVILD (DC) VREFD 0.10 V 10DC Input Logic HIGH Voltage for DQ and DBI# pins with VREFD2VIHD2 (DC) VREFD2 + 0.30 V 10DC Input Logic LOW Voltage for DQ and DBI# pins with VREFD2VILD2 (DC) VREFD2 0.30 V 10Input Logic HIGH Voltage for RESET#, SEN, MFVIHR VDDQ 0.50 V 10Input Logic LOW Voltage fo

19、r RESET#, SEN, MFVILR 0.30 V 10Input logic HIGH voltage for EDC1/2 (x16 mode detect)VIHX VDDQ 0.3 V 8, 10Input logic LOW voltage for EDC1/2 (x16 mode detect)VILX 0.30 V 8, 10Input Leakage CurrentAny Input 0V = VIN= VDDQ(All other pins not under test = 0V) Il AOutput Leakage Current (DQs are disabled

20、; 0V = Vout = VDDQ)Ioz AOutput Logic LOW Voltage VOL (DC) 0.62 VJEDEC Standard No, 820APage 32 Operating conditions (contd) NOTE 1 Applicable to GDDR4 or other interface with a single VREF for the device.NOTE 2 Applicable to GDDR5 or other interface with multiple VREF pins and levels.Figure 1 Voltag

21、e WaveformTable 2 AC Operating ConditionsPOD15Parameter Symbol Min Typ Max Unit NoteAC Input Logic HIGH Voltage VIH (AC) VREFC + 0.20 V 1AC Input Logic Low Voltage VIL (AC) VREFC 0.20 V 1AC Input Logic HIGH Voltage for address and commandVIHA (AC) VREFC + 0.20 V 2AC Input Logic LOW Voltage for addre

22、ss and commandVILA (AC) VREFC 0.20 V 2AC Input Logic HIGH Voltage for DQ and DBI# pins with VREFDVIHD (AC) VREFD + 0.15 V 2AC Input Logic LOW Voltage for DQ and DBI# pins with VREFDVILD (AC) VREFD 0.15 V 2AC Input Logic HIGH Voltage for DQ and DBI# pins with VREFD2VIHD2 (AC) VREFD2 + 0.40 V 2AC Inpu

23、t Logic LOW Voltage for DQ and DBI# pins with VREFD2VILD2 (AC) VREFD2 0.40 V 2VIL (AC)VIL (DC)VREF DC NoiseVREF DC NoiseVREF + DC NoiseVREF + AC NoiseVIH (DC)VIH (AC)VOHVIN (AC) Provides marginbetween VOL (MAX) andVIL (AC)VDDQVOL (MAX)System Noise Margin (Power/Ground, Crosstalk, Signal Integrity At

24、tenuation)OutputInputNote: VREF, VIH, VIL refer towhichever VREFxx (VREFD, VREFD2, or VREFC) is being used. JEDEC Standard No. 820APage 42 Operating conditions (contd)NOTE 1 This provides a minimum of 0.9V to a maximum of 1.2V, and is nominally 70% of VDDQ with POD15. DRAM timings relative to CK can

25、not be guaranteed if these limits are exceeded.NOTE 2 For AC operations, all DC clock requirements must be satisfied as well.NOTE 3 The value of VIXCK and VIXWCK is expected to equal 70% VDDQ for the transmitting device and must track variations in the DC level of the same.NOTE 4 VIDCK is the magnit

26、ude of the difference between the input level in CK and the input level on CK#. The input reference level for signals other than CK and CK# is VREFC.NOTE 5 VIDWCK is the magnitude of the difference between the input level in WCK and the input level on WCK#. The input reference level for signals othe

27、r than WCK and WCK# is either VREFD, VREFD2 or the internal VREFD.NOTE 6 The CK and CK# input reference level (for timing referenced to CK and CK#) is the point at which CK and CK# cross. NOTE 7 The WCK and WCK# input reference level (for timing referenced to WCK and WCK#) is the point at which WCK

28、and WCK# cross. NOTE 8 VREFD is either VREFD, VREFD2 or the internal VREFD.NOTE 9 The slew rate is measured between VREFC crossing and VIXCK(AC).NOTE 10 The slew rate is measured between VREFD crossing and VIXWCK(AC).NOTE 11 Figure 3 illustrates the exact relationship between (CKCK#) or (WCKWCK#) an

29、d VID(AC), VID(DC) and tDVACNOTE 12 Ringback below VID(DC) is not allowed.NOTE 13 tDVACis not measured in and of itself as a compliance specification, but is relied upon in measurement of clock operating conditions and clock related parameters.NOTE 14 Applicable to GDDR5 or other interface with mult

30、iple VREF pins and levels.Table 3 Clock Input Operating ConditionsPOD15Parameter Symbol Min Max Unit NoteClock Input MidPoint Voltage; CK and CK# VMP (DC) VREFC 0.10 VREFC + 0.10 V 1, 6Clock Input Differential Voltage; CK and CK#VID or VIDCK (DC)0.22 V 4, 6Clock Input Differential Voltage; CK and CK

31、# VID or VIDCK (AC)0.40 V 2, 4, 6Clock Input Differential Voltage; WCK and WCK# VIDWCK (DC) 0.20 V 5, 7, 14Clock Input Differential Voltage; WCK and WCK# VIDWCK (AC) 0.302, 5, 7, 14Clock Input Voltage Level; CK, CK#, WCK and WCK# single ended VIN 0.30 VDDQ + 0.30CK/CK# Single ended slew rate CKslew

32、3 V/ns 9WCK/WCK# Single ended slew rate WCKslew 3 V/ns 10, 14Clock Input Crossing Point Voltage; CK and CK#VIX or VIXCK (AC)VREFC 0.12 VREFC + 0.12 V 2, 3, 6Clock Input Crossing Point Voltage; WCK and WCK# VIXWCK (AC) VREFD 0.10 VREFD + 0.10 V2, 3, 7, 8, 14Allowed time before ringback of CK/WCK belo

33、w VIDCK/WCK(AC)tDVACps11, 12, 13, 14JEDEC Standard No, 820APage 52 Operating conditions (contd)Figure 2 Clock WaveformFigure 3 Definition of differential acswing and “time above aclevel” tDVACVIX(AC)CK#CKMaximum Clock LevelMinimum Clock LevelVID (AC)VID (DC)VMP (DC)0VID (AC) MINtDVACtDVAChalf cyclet

34、imeDifferentialInputVoltage(i.e.WCK WCK#,CK CK#)VID (DC) MIN(VID (DC) MIN)(VID (AC) MIN)JEDEC Standard No. 820APage 62 Operating conditions (contd)The Driver and Termination impedances are derived from the following test conditions under worst case process corners:1. Nominal 1.5V (VDD/VDDQ)2. Power

35、the DRAM device and calibrate the output drivers and termination to eliminate process variation at 25 C.3. Reduce temperature to 10 C recalibrate.4. Reduce temperature to 0 C and take the fast corner measurement.5. Raise temperature to 75 C and recalibrate6. Raise temperature to 85 C and take the sl

36、ow corner measurement7. Reiterate 2 to 6 with VDD/VDDQ 1.455V8. Reiterate 2 to 6 with VDD/VDDQ 1.545V9. All obtained Driver and Termination IV characteristics have to be bounded by the specified MIN and MAX IV characteristicsThe following values (Ideal with +/ 10% min/max) are targets for the design

37、er and are not required to be met. Vendor datasheets should be consulted for further details. It is expected that the characteristics of the real curves will have some nonlinearity as shown in Figure 6 and Figure 7. This may help to reduce the overall capacitance and boost performance. It is up to t

38、he designer to find the optimum combination of linearity and capacitance for best Rx and Tx performance. Table 4 1.5V I/O ImpedancesPullDown Characteristic at 40 ohms PullUp/Termination Characteristic at 60 ohmsVoltage (V) MIN(mA) Ideal(mA) MAX(mA) Voltage (V) MIN(mA) Ideal(mA) MAX(mA)0.1 2.52.502.7

39、5 0.11.50 1.67 1.830.2 4.505.005.50 0.23.00 3.33 3.670.3 6.757.508.25 0.34.50 5.00 5.500.4 9.00 10.00 11.00 0.4 6.00 6.67 7.330.5 11.25 12.50 13.75 0.5 7.50 8.33 9.170.6 13.50 15.00 16.50 0.6 9.00 10.00 11.000.7 15.75 17.50 19.25 0.7 10.50 11.67 12.830.8 18.00 20.00 22.00 0.8 12.00 13.33 14.670.9 20

40、.25 22.50 24.75 0.9 13.50 15.00 16.501.0 22.50 25.00 27.50 1.0 15.00 16.67 18.331.1 24.75 27.50 30.25 1.1 16.50 18.33 20.171.2 27.00 30.00 33.00 1.2 18.00 20.00 22.001.3 29.25 32.50 35.75 1.3 19.50 21.67 23.831.4 31.50 35.00 38.50 1.4 21.00 23.33 25.671.5 33.75 37.50 41.25 1.5 22.50 25.00 27.50JEDEC

41、 Standard No, 820APage 72 Operating conditions (contd)Figure 4 Target Pull Down Characteristic at 40 ohmsFigure 5 Target Pull Up/Termination Characteristic at 60 ohms0510152025303540450.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5VmAMin Ideal Max-30-25-20-15-10-500.1 0.2 0.3 0.4 0.5 0.6

42、 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5VmAMin Ideal MaxJEDEC Standard No. 820APage 82 Operating conditions (contd)Figure 6 Example of Nonlinearity, Pull Down Characteristic at 40 ohmsFigure 7 Example of Nonlinearity, Pull Up/Termination Characteristic at 60 ohmsIdeal Non-Linearity0.005.0010.0015.0020.0

43、025.0030.0035.0040.0045.000.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5VmAIdeal Non-Linearity-30.00-25.00-20.00-15.00-10.00-5.000.000.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5VmAJEDEC Standard No, 820APage 93 Additional Background InformationThe POD I/O system is optimi

44、zed for small systems with data rates exceeding 2.0 Gbps. The system allows a single Master device to control one or two slaves in the case of GDDR5 and one, two or four slave devices in the case of GDDR4. The POD driver uses a 40/60 Ohm output impedance that drives into a 60 Ohm equivalent terminat

45、or tied to VDDQ. Single, dual and quad load systems are shown as follows:Figure 8 System ConfigurationsThe POD Master I/O cell is comprised of a 40/60 Ohm driver and a terminator of 60 Ohms. The Master POD cells terminator is disabled when the output driver is enabled. The basic cell is shown in Fig

46、ure 9.Figure 9 Master I/O CellVDDQ240 Ohm40/60 Ohm240 Ohm 240 Ohm 240 OhmGDDR4 ADD/CMDVDDQ120 Ohm40/60 Ohm120 OhmADD/CMD or GDDR4 Data Bit VDDQ60 Ohm40/60 OhmData Bit or ADD/CMD4 Slaves (GDDR4 only)2 Slaves1 SlaveDQOutput DataOutput EnableVSSQVDDQ60 Ohm TerminatorEnabled when receiving60 Ohm pullup

47、and 40 Ohm pulldownwhen transmittingJEDEC Standard No. 820APage 103 Additional Background Information (contd)The POD Slave I/O cell is comprised of a 40/60 ohm driver and programmable terminator of 60 or 120 ohms for GDDR5 and 60, 120 or 240 ohms for GDDR4. The Slave POD cells terminator is disabled

48、 when the output driver is enabled or any other Slave output driver is enabled. The basic cell is shown in Figure 10.Figure 10 Slave I/O CellThe POD Master and Slave I/O cells are intended to have their driver and terminators combined together to minimize the area needed to implement the cell and re

49、duce input capacitance. For GDDR4 this is possible by using six 240 Ohm driver/terminator sub cells that are connected in parallel. The combinations used are as follows.For GDDR5 this is possible by using three 120 Ohm driver/terminator sub cells that are connected in parallel. The combinations used are as follows.Table 5 POD I/O Sub Cells, 240 Ohm Based# of 240 ohm Sub Cells EnabledResulting Impedance Use

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1