ImageVerifierCode 换一换
格式:PDF , 页数:20 ,大小:297.53KB ,
资源ID:807304      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-807304.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(JEDEC JESD8-30-2017 POD125 - 1 25 V Pseudo Open Drain I O.pdf)为本站会员(周芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

JEDEC JESD8-30-2017 POD125 - 1 25 V Pseudo Open Drain I O.pdf

1、JEDEC SOLID STATE TECHNOLOGY ASSOCIATIONJESD8-30SEPTEMBER 2017JEDECSTANDARDPOD125 - 1.25 V Pseudo OpenDrain I/ONOTICEJEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Board of Directors level and subsequently reviewed and approved by t

2、he JEDEC legal counsel.JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minim

3、um delay the proper product for use by those other than JEDEC members, whether the standard is to be used either domestically or internationally.JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By s

4、uch action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the JEDEC standards or publications.The information included in JEDEC standards and publications represents a sound approach to product specification and application, pr

5、incipally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an ANSI standard.No claims to be in conformance with this standard may be made unless all requiremen

6、ts stated in the standard are met.Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC at the address below, or refer to www.jedec.org under Standards and Documents for alternative contact information.Published byJEDEC Solid

7、State Technology Association 20173103 North 10th StreetSuite 240 SouthArlington, VA 22201-2107This document may be downloaded free of charge; however JEDEC retains the copyright on this material. By downloading this file the individual agrees not to charge for or resell the resulting material.PRICE:

8、 Contact JEDECPrinted in the U.S.A. All rights reservedPLEASE!DONT VIOLATETHELAW!This document is copyrighted by JEDEC and may not bereproduced without permission.For information, contact:JEDEC Solid State Technology Association3103 North 10th StreetSuite 240 SouthArlington, VA 22201-2107or refer to

9、 www.jedec.org under Standards-Documents/Copyright Information.JEDEC Standard No. 8-30Page 1POD125 - 1.25 V PSEUDO OPEN DRAIN I/O(From JEDEC Board Ballot JCB-17-25, formulated under the cognizance of the JC-16 Committee on Interface Technology.)1 ScopeThis standard defines the DC and AC single-ended

10、 (data) and differential (clock) operating conditions, I/O impedances, and the termination and calibration scheme for 1.25 V Pseudo Open Drain I/Os.The 1.25 V Pseudo Open Drain interface, also known as POD125, is primarily used to communicate with GDDR6 SGRAM devices.Multiple Classes of POD125 are e

11、xpected to reside within the family of POD125 interfaces in order to accommodate various device and market applications. The various classes standardized within the context of POD125 are documented in the appendices of this document (e.g., POD125/Class A).The core of this standard documents the subs

12、et of values common to all Classes of POD125 and documents specification items left to definition within a specific Class as denoted by CDV which is defined as Class Dependent Value.The values specific to each particular class of POD125 are found in the annexes. See specific Class tables for further

13、 details.NOTE It does not follow that all specification values defined in a given Class are necessarily different from the matching parameter in other Class within POD125. Multiple Classes may reuse a given specification value if appropriate to the Class requirements.JEDEC Standard No. 8-30Page 22 C

14、ore POD125 Interface StandardTable 1 DC Operating ConditionsParameter SymbolPOD125Unit NotesMin Typ MaxDevice Supply Voltage VDD1.2125 1.25 1.2875 V 1Output Supply Voltage VDDQ1.2125 1.25 1.2875 V 1Reference voltage: DQ and DBI_n pinsReference voltage: CA pinsDC input logic HIGH voltage with VREFC:

15、CADC input logic LOW voltage with VREFC: CADC input logic HIGH voltage with VREFC2: CADC input logic LOW voltage with VREFC2: CADC input logic HIGH voltage with VREFD: DQ, DBI_nDC input logic LOW voltage with VREFD: DQ, DBI_nDC input logic HIGH voltage with VREFD2: DQ, DBI_nDC input logic LOW voltag

16、e with VREFD2: DQ, DBI_nRESET_n and boundary scan input logic HIGH voltage; EDC and CA input logic high voltage for x16/x8 mode, PC vs. 2-channel mode, CK and CA ODT select at resetRESET_n and boundary scan input logic LOW voltage; EDC and CA input logic low voltage for x16/x8 mode, PC vs. 2-channel

17、 mode, CK and CA ODT select at resetInput leakage current (any input 0V = VIN= VDDQ; all other signals not under test = 0V) Output leakage current (outputs are disabled;0V = VOUT= VDDQ)Output logic LOW voltage VOL(DC) 0.52 VSingle ended clock input voltage level: CK_t, CK_c, WCK_t, WCK_cClock input

18、mid-point voltage: CK_t, CK_cClock input differential voltage: CK_t, CK_cClock input differential voltage: WCK_t, WCK_cNOTE 2 DC bandwidth is limited to 20 MHz.NOTE 3 AC noise in the system is estimated at 50mV pk-pk for the purpose of DRAM design.NOTE 4 The reference voltage source and control for

19、DQ and DBI_n pins are determined by Half VREFDand VREFDLevel mode register bits.NOTE 5 Programmable VREFDlevels are not supported with VREFD2.NOTE 6 The reference voltage source (external or internal) is determined at power-up; the reference voltage level is determined by Half VREFCand the VREFCOffs

20、et mode register bits. NOTE 7 Programmable VREFCoffsets are not supported with VREFC2.NOTE 8 VIHRand VILRapply to boundary scan input pins TDI, TMS and TCK. VIHRand VILRapply to EDC and CA inputs at reset when latching default device configurations. VIHRand VILRalso apply to CA, CABI_n, CKE_n, CK, D

21、Q, DBI_n, EDC and WCK inputs when boundary scan mode is active and input data are latched in the Capture-DR TAP controller state.NOTE 9 This provides a minimum of 0.775 V to a maximum of 0.975 V, and is normally 70% of VDDQ. DRAM timings relative to CK_t cannot be guaranteed if these limits are exce

22、eded.NOTE 10 VIDCKis the magnitude of the difference between the input level in CK_t and the input level on CK_c. The input reference level for signals other than CK_t and CK_c is VREFC.NOTE 11 VIDWCKis the magnitude of the difference between the input level in WCK_t and the input level on WCK_c. Th

23、e input reference level for signals other than WCK_t and WCK_c is either VREFC, VREFC2, VREFDor VREFD2.NOTE 12 The CK_t and CK_c input reference level (for timing referenced to CK_t and CK_c) is the point at which CK_t and CK_c cross. Please refer to the applicable timings in the AC Timings table.NO

24、TE 13 Use VIHRand VILRwhen boundary scan mode is active and input data are latched in the Capture-DR TAP controller state.NOTE 14 The WCK_t and WCK_c input reference level (for timing referenced to WCK_t and WCK_c) is the point at which WCK_t and WCK_c cross. Please refer to the applicable timings i

25、n the AC Timings table.VREFDCDV CDV V 3, 4VREFD2CDV CDV V 3, 4, 5VREFCCDV CDV V 6VREFC2CDV CDV V 6, 7VIHA(DC) CDV V 8VILA(DC) CDV V 8VIHA2(DC) CDV V 8VILA2(DC) CDV V 8VIHD(DC) CDV V 8VILD(DC) CDV V 8VIHD2(DC) CDV V 8VILD2(DC) CDV V 8VIHRCDV V 8VILRCDV V 8ILAIOZAVIN-0.30 VDDQ+ 0.30 13VMP(DC) VREFC- 0

26、.10 VREFC+ 0.10 V 9, 12VIDCK(DC) CDV V 10, 12VIDWCK(DC) CDV V 11, 14NOTE 1 GDDR6 SGRAMs are designed to tolerate PCB designs with separate VDDand VDDQpower regulators.Table 2 AC Operating Conditions (For Design only11)Parameter SymbolPOD125Unit NotesMin Typ MaxAC input logic HIGH voltage with VREFC:

27、 CAAC input logic LOW voltage with VREFC: CAAC input logic HIGH voltage with VREFC2: CAAC input logic LOW voltage with VREFC2: CAAC input logic HIGH voltage with VREFD: DQ, DBI_nAC input logic LOW voltage with VREFD: DQ, DBI_nAC input logic HIGH voltage with VREFD2: DQ,DBI_nAC input logic LOW voltag

28、e with VREFD2: DQ,DBI_nClock input differential voltage: CK_t, CK_c Clock input differential voltage: WCK_t, WCK_c Clock input crossing point voltage; CK_t, CK_cClock input crossing point voltage: WCK_t, WCK_cAllowed time before ring back of CK/WCK below VIDCK(AC)/VIDWCK(AC)NOTE 2 The value of VIXCK

29、and VIXWCKis expected to equal 70% VDDQfor the transmitting device and must track variations in the DC level of the same.NOTE 3 VIDCKis the magnitude of the difference between the input level in CK_t and the input level on CK_c. The input reference level for signals other than CK_t and CK_c is VREFC

30、.NOTE 4 VIDWCKis the magnitude of the difference between the input level in WCK_t and the input level on WCK_c. The input reference level for signals other than WCK_t and WCK_c is either VREFC, VREFC2, VREFDor VREFD2.NOTE 5 The CK_t and CK_c input reference level (for timing referenced to CK_t and C

31、K_c) is the point at which CK_t and CK_c cross. Please refer to the applicable timings in the AC Timings table.NOTE 6 The WCK_t and WCK_c input reference level (for timing referenced to WCK_t and WCK_c) is the point at which WCK_t and WCK_c cross. Please refer to the applicable timings in the AC Tim

32、ings table.NOTE 7 VREFDis either VREFDor VREFD2NOTE 8 Figure 3 illustrates the exact relationship between (CK_t - CK_c) or (WCK_t - WCK_c) and VID(AC), VID(DC) and tDVAC.NOTE 9 Ring back below VID(DC) is not allowed.NOTE 10 tDVACis not measured in and of itself as a compliance specification, but is

33、relied upon in measurement of clock operating conditions and clock related parameters.NOTE 11 The AC Operating conditions are for DRAM design only and are valid on the silicon at the input of the receiver. They are not intended to be measured.JEDEC Standard No. 8-30Page 3VIHA(AC) CDV VVILA(AC) CDV V

34、VIHA2(AC) CDV VVILA2(AC) CDV VVIHD(AC) CDV VVILD(AC) CDV VVIHD2(AC) CDV VVILD2(AC) CDV VVIDCK(AC) CDV V 1, 3, 5VIDWCK(AC)CDV 1, 4, 6VIXCK(AC) VREFC- 0.10 VREFC+ 0.10 V 1, 2, 5VIXWCK(AC)VREFD- 0.09 VREFD+ 0.09 V 1, 2, 6, 7tDVACps 8, 9, 10NOTE 1 For AC operations, all DC clock requirements must be sat

35、isfied as well.JEDEC Standard No. 8-30Page 42 Core POD125 Interface Standard (contd)VIL(AC)VIL(DC)VREF- DC NoiseVREF- DC NoiseVREF+ DC NoiseVREF+ AC NoiseVIH(DC)VIH(AC)VOHVIN(AC) - Provides marginbetween VOL (MAX) andVIL(AC)VDDQVOL (MAX)System Noise Margin (Power/Ground, Crosstalk, Signal Integrity

36、Attenuation)OutputInputNOTE VREF, VIH, VIL refer towhichever VREFxx (VREFD, VREFD2,VREFC, or VREFC2) is being used. Figure 1 Voltage WaveformJEDEC Standard No. 8-30Page 52 Core POD125 Interface Standard (contd)VIX(AC)CK_cCK_tMaximum Clock LevelMinimum Clock LevelVID(AC)VID(DC)VMP(DC)Figure 2 Clock W

37、aveform0VID (AC) MINtDVACtDVAChalf cycletimeDifferential Input Voltage (i.e., WCK_t - WCK_c, CK_t -CK_c)VID (DC) MIN-(VID (DC) MIN)-(VID (AC) MIN)Figure 3 Definition of Differential AC-Swing and “Time above AC-Level” tDVACJEDEC Standard No. 8-30Page 62 Core POD125 Interface Standard (contd)The Drive

38、r and Termination impedances are derived from the following test conditions under worst case process corners:1. Nominal 1.25 V (VDD/VDDQ)2. Power the device and calibrate the output drivers and termination to eliminate process variation at 25 C.3. Reduce temperature to 10 C and recalibrate.4. Reduce

39、 temperature to 0 C and take the fast corner measurement.5. Raise temperature to 75 C and recalibrate6. Raise temperature to 85 C and take the slow corner measurement7. Reiterate 2 to 6 with VDD/VDDQ1.2125 V8. Reiterate 2 to 6 with VDD/VDDQ1.2875 V9. All obtained driver and termination IV characteri

40、stics have to be bounded by the specified MIN and MAX IV characteristics.The following values (ideal with +/- 10% min/max) are targets for the designer and are not required to be met. Vendor datasheets should be consulted for further details. It is expected that the characteristics of the real curve

41、s will have some non-linearity as shown in Figure 6 and Figure 7. This may help to reduce the overall capacitance and boost performance. It is up to the designer to find the optimum combination of lin-earity and capacitance for best RX and TX performance. Table 3 1.25V I/O ImpedancesPull-Down Charac

42、teristic at 40 Ohm Pull-Up/Termination Characteristic at 60 OhmVoltage (V) MIN(mA) Ideal(mA) MAX(mA) Voltage (V) MIN(mA) Ideal(mA) MAX(mA)0.1 2.25 2.50 2.75 0.1 -1.50 -1.67 -1.830.2 4.50 5.00 5.50 0.2 -3.00 -3.33 -3.670.3 6.75 7.50 8.25 0.3 -4.50 -5.00 -5.500.4 9.00 10.00 11.00 0.4 -6.00 -6.67 -7.33

43、0.5 11.25 12.50 13.75 0.5 -7.50 -8.33 -9.170.6 13.50 15.00 16.50 0.6 -9.00 -10.00 -11.000.7 15.75 17.50 19.25 0.7 -10.50 -11.67 -12.830.8 18.00 20.00 22.00 0.8 -12.00 -13.33 -14.670.9 20.25 22.50 24.75 0.9 -13.50 -15.00 -16.501.0 22.50 25.00 27.50 1.0 -15.00 -16.67 -18.331.1 24.75 27.50 30.25 1.1 -1

44、6.50 -18.33 -20.171.2 27.00 30.00 33.00 1.2 -18.00 -20.00 -22.001.25 28.125 31.25 35.375 1.3 -18.75 -21.835 -22.91545403530201510500.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3ideal MaxmAVolts25MinJEDEC Standard No. 8-30Page 72 Core POD125 Interface Standard (contd)Figure 4 Target Pull-Down Ch

45、aracteristic at 40 Ohm0-5-10mAVolts0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3-15-20-25-30idealMin MaxFigure 5 Target Pull-Up/Termination Characteristic at 60 Ohm45.0040.0035.0030.0020.0015.0010.005.000.000.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3ideal non-linearitymAVolts25.00JEDEC

46、 Standard No. 8-30Page 82 Core POD125 Interface Standard (contd)Figure 6 Example of Non-Linearity, Pull-Down Characteristic at 40 Ohm0.00-5.00-10.00ideal non-linearitymAVolts0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3-15.00-20.00-25.00-30.00Figure 7 Example of Non-Linearity, Pull-Up/Terminat

47、ion Characteristic at 60 OhmJEDEC Standard No. 8-30Page 93 Additional Background InformationThe POD I/O system is optimized for small systems with very high data rates. The system allows a single master device to control one or two slaves in the case of GDDR6. The POD driver uses either a 60/40 Ohm

48、output impedance that drives into a 60 Ohm equivalent terminator tied to VDDQor a 48/40 Ohm output impedance that drives into a 48 Ohm equivalent terminator tied to VDDQ. Single and dual load systems are shown as follows:VDDQ120 Ohm40/60 Ohm120 OhmCAVDDQ60 Ohm40/60 OhmData Bit or CA2 Slaves1 SlaveFi

49、gure 8 System ConfigurationsThe POD Master I/O cell is comprised of a 60/40 Ohm driver and a terminator of 60 Ohms or a 48/40 Ohm driver and a terminator of 48 Ohms. The Master POD cells terminator is disabled when the output driver is enabled. The basic cell is shown in Figure 9.DQOutput DataOutput EnableVSSVDDQ60 Ohm (or 48 Ohm) TerminatorEnabled when receiving60 Ohm (or 48 Ohm) pull-up and 40 Ohm pull-downwhen transmittingFigure 9 Master I/O CellJEDEC Standard No. 8-30Page 103 Additional Background Information (contd)The POD slave I/O cell is comprise

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1