ImageVerifierCode 换一换
格式:PDF , 页数:99 ,大小:1.56MB ,
资源ID:835759      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-835759.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NACE GUD IMPRO PIPLN SAF-2011 Guide to IMPROVING PIPELINE SAFETY by Corrosion Management.pdf)为本站会员(deputyduring120)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NACE GUD IMPRO PIPLN SAF-2011 Guide to IMPROVING PIPELINE SAFETY by Corrosion Management.pdf

1、 P1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21GuidetoImprovingPipelineSafetybyCorrosionManagementNatural Gas and Hazardous LiquidTransmission Pipelines1440SouthCreekDriveHouston,Texas77084iP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21C2011byNACEInt

2、ernationalLibraryofCongressCataloguinginPublicationDataHevle,Drew.Guidetoimprovingpipelinesafetybycorrosionmanagement/DrewHevle.1sted.p.cm.Includesbibliographicalreferencesandindex.ISBN1-57590-243-51.PetroleumpipelinesMaintenanceandrepair. 2.PetroleumpipelinesCorrosion.I.NACEInternational. II.Title.

3、TN879.58.H48 2011665.7prime440289dc23 2011040780ISBN:1-57590-243-5PrintedintheUnitedStatesofAmerica.Allrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinanyformwithoutpermissionofthecopyrightowners.NeitherNACEInternational,itsofficers, directors,ormembersthereofacceptanyresponsibilityforthe

4、useofthemethodsandmaterialsdiscussedherein.Theinformationisadvisoryonlyandtheuseofthematerialsandmethodsissolelyattheriskoftheuser.NACEInternational1440SouthCreekDriveHouston,Texas77084http:/www.nace.orgiiP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21ContentsForeword vPrefac

5、e vii1 Introduction 12 An Overview of Corrosion Concerns on Pipelines 33 Pipeline Corrosion Management 94 Corrosion Threat Assessment 135 Economic Considerations and Risk Evaluation 156 Mitigating Corrosion Risk 217 Integrity Assessments 398 Remediation 499 Program Effectiveness 59AppendixA:NetPrese

6、ntValueExplanationandExample 69AppendixB:EconomicsofCorrosion 73AppendixC:SelectAbovegroundCoatingStandards 81AppendixD:Termsand Definitions 89Index 93iiiP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21ForewordPipelinesarethesafestformoftransportation,andacriticalpartofourcoun

7、-trysinfrastructure.Pipelinesplayasignificant roleinthedeliveryofenergytoeveryone reading this and likely will for the span of each readers entire life-time.Pipelinesareplayinganincreasingroleinnontraditionalareas,includingalternative fuels such as biofuels and environmental activities such as carbo

8、nsequestration.Pipelinesareheretostayandaresafe.Thatbeingsaid,thereiscertainlyroomforimprovementinpipelinesafety.Ultimatelysocietydictatesthe level of public safety expected. Society balances the pressures of highersafety standards with the additional costs that those standards typically entailandle

9、tsindustryknowindirectlythroughtheirgovernmentrepresentatives,themedia,andincreasingly,directlythroughsocialmedia,litigation,andactivism.Oftenthegovernmentrespondstosocietysdemandforhighersafetystandardsbyissuingnewregulationsforminimumstandards.Sometimesthedriversforincreases in levels of safety ar

10、e technolog s becoming more affordable. Inie1984, New York State passed the first U.S. law requiring seat belt use in pas-sengercars.Seatbeltstodaysaveover11,000liveseveryyearintheU.S.alone.Seat belts evolved into passive restraints including airbags, anti-lock brakes,stability control systems, and

11、many other safety systems. Today most of uscantevenimagineatimewhendrivingwithoutsecuringourchildreninchildsafetyseatswascommonpractice.PipelinesafetyintheUnitedStateshasevolvedinaformofpunctuatedequilibrium. The stasis has been broken up by rare and rapid events driven(forthemostpart)bypipelinefail

12、ureincidents.CongresscreatedtheOffice ofPipelineSafety(OPS)in1968tooverseeandimplementpipelinesafetyregu-lations.The first statuteregulatingpipelinesafetywastheNaturalGasPipelineSafetyActof1968,andCongresslateraddedliquidpipelinestothestatuteinvP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan Nove

13、mber8,2011 14:21vi FOREWORDthePipelineSafetyActof1979.Thesetwoeventswerelargelydrivenbyanatu-ralgasexplosionin1965inNatchitoches,Louisiana,thatkilled17people.Thecauseofthefailurewasstresscorrosioncracking,afailuremechanismthathadnotbeenattributedtopipelinefailuresbeforethisincident.NACEInternational

14、played a part by developing and publishing its first standard, SP0169 (knownas RP0169 at that time), “Control of External Corrosion on Underground orSubmergedMetallicPipingSystems,”thatthecorrosioncontrolportionsofthenew Pipeline Safety Regulations were in part based on. More recent pipelinefailures

15、suchasthoseinBellingham,Washington,andCarlsbad,NewMexico,drovethePipelineSafetyImprovementActof2002,andrecentfailuresintheGulf of Mexico, in Marshall, Michigan, and in San Bruno, California, willcertainlymandatemorechangestopipelinesafetyregulationsandstandards.Why do pipeline failures generate such

16、 notoriety? Motor vehicle acci-dentskillmorethan45,000peopleperyearintheU.S.,butafatalcarcrashisntnational news like a fatality caused by a pipeline failure. Incidents related topower lines are much less notorious, and typically around 100 people in theU.S. are killed every year, whereas many fewer

17、people are killed in pipelineincidents. One reason is the record of success that pipeline safety has had todate similar to the affliction of the airline industry, where the expectation of, safetyissohighthatanyincidentatallbecomesnewsworthy.Anotherreasonmaybethatpowerlinesareahazardthatcanbeseenandu

18、nderstood,butmanypeoplearenotawareoftheburiedpipelinesnearthem.Much of the low-hanging fruit of pipeline safety has already beenplucked.Thereisalwaysroomforimprovement,buttherearenoeasyanswers,and no paradigm-shifting technologies on the immediate horizon. Improve-mentsinpipelinesafetywillhavetobema

19、debysmallimprovementsinalargenumberofareas.Thesetypesofimprovementslendthemselvestocomprehen-siveprograms,toensurethatoptimumdecisionsaremadeateachstageofthepipelineslife.PipelineCorrosionManagementaspresentedinthisdocumentisintendedtoprovideacomprehensiveprocessforensuringthateachdecisionrelated to

20、 managing corrosion on pipelines is fully considered. Pipelines areplaying an increasing role in our energy infrastructure, societys expectationsforpublicsafetyareeverincreasing,andcontinuousimprovementinmanagingthreatstopipelineintegritysuchascorrosionisessential.DrewHevleManager,CorrosionControlEl

21、PasoCorporationTG370ChairP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21PrefaceConsidering the investment that owners make to build, maintain, and op-erate carbon steel onshore transmission pipelines, hereinafter referred to as“pipelines,”aswellastheriskandhazardsofapipelinef

22、ailure,itisimperativethatownersmanagethreatstopipelineintegrity.Aprincipalthreattopipelineintegrityiscorrosion.Transmissionpipelinesareprimarilyconstructedofcar-bonsteel,andcorrosionisatime-dependentthreatthatcausestheintegrityoftransmission pipelines to deteriorate if left unchecked. To maintain pi

23、pelineintegrity,aconcerteddesign,maintenance,andrepairprogramaddressingcor-rosionthreatsshouldbeimplemented.Theprimarygoalofthisguideistoprovidepipelineindustrymanagersand nontechnical personnel with an understanding of the basic issues andrequirementsformanagingcorrosionthreatstoonshoretransmission

24、pipelines.Itisunderstoodthatmostownershaveintegritymanagementprogramsinplacethat deal at some level with corrosion threats, and this guide is not intendedto replace these programs but to supplement those programs by providing afoundationalunderstandingofthefollowingconcepts:a114Basiccorrosionthreats

25、totransmissionpipelines,a114Risksposedbycorrosionthreats,a114Corrosionmitigationstrategies,a114Assessmentmethodologies,a114Identifyingandimplementingremediationactivities,anda114Methodsforevaluatingtheeffectivenessofaprogram.This guide is not intended to provide step-by-step instructions for managin

26、gpipeline corrosion; instead it outlines and identifies the essential componentsofaPipelineCorrosionManagementProgramandpresentsconsiderationsanddecision-making tools for developing and implementing a program. OwnersviiP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21viii PREFA

27、CEcan develop their own programs based on their needs and can leverage thisguide,andcorrespondingreferences,asavailableresources.This guide has been prepared by Task Group 370, “Pipeline CorrosionManagement,” which is administered by Specific Technology Group (STG)35,“Pipelines,Tanks,andUndergroundS

28、ystems.”ThisguideispublishedbyNACEundertheauspicesofSTG35.P1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:6SECTION 1IntroductionWith origins dating back to approximately 1,000 B.C. (with the Phoeniciansfirst using a form of pipeline to transport water), pipelines have become on

29、eofthemostreliable,cost-effective,andsafestmodesoftransportingvitalcom-modities. Today, an elaborate network of pipelines can be found in nearlyeverydevelopedcountryaroundtheworld,withmorethan1.35millionmiles(2.17millionkm)ofoilandgaspipelinesworldwide.Thisvastnetworkhelpsdelivermorethan50%oftheworl

30、dsenergysupply.1Ensuringtheintegrityofthis infrastructure is paramount to delivering this critical energy source to itsvarioususersandthecommunitiesthatdependonthem.Pipelinesarerecognizedasbeingbyfarthesafestmodeoftransportingnatural gas and hazardous liquids, with fatalities resulting from accident

31、s onpipelines occurring much less often than accidents caused by transportationof goods by truck or barge. Fires or explosions are 35 times more likely perbarrel of oil transported by vehicle than when oil is transported by pipeline.2However,despitebeingoneofthesafestmodesoftransportation,pipelinesa

32、resubjecttoavarietyofthreatsandaccidentsthatcanresultinpropertydamage,injury, loss of life, or environmental damage. Corrosion remains a constantthreat to the integrity of pipelines, accounting for over 20% of all significanttransmissionincidentsintheU.S.3Corrosion attacks the steel walls of a pipel

33、ine, reducing its capacityto retain pressure. If corrosion is left unchecked, the resulting failure of thepipe wall can rapidly release oil or gas into the environment, causing fire andenvironmentaldamage.Figure1showsapipelinefailurecausedbycorrosion.This guide presents a defined process for the man

34、agement of corrosionspecific topipelinescarryingnaturalgasandhazardousliquids.Tohelp define1P1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:62 GUIDE TO IMPROVING PIPELINE SAFETY BY CORROSION MANAGEMENTFIGURE 1 Picture of a Pipeline Failure Caused by Corrosionthis corrosion mana

35、gement process and provide context for the process, thisguideprovidesabasicoverviewofthefollowingtopics:(1) A high-level overview of the corrosion threats to onshore gas and haz-ardousliquidtransmissionpipelines;(2) Methodologyandprocessworkflowalongwitheconomicconsiderationstoassistinthecorrosionma

36、nagementdecision-makingprocess;(3) Approachestoevaluatetherisksposedbycorrosionthreats;and(4) Key mitigation, assessment, and remediation strategies to preservepipelineintegrityandreducetheriskfromcorrosionthreats.P1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:6SECTION 2AnOver

37、viewofCorrosionConcernsonPipelinesPipelinesarethesafestandmosteconomicalwaytotransportvaluablegasandliquidcommoditiessuchasnaturalgas,crudeoil, refined products,andlique-fied natural gas. These commodities may be hazardous when unintentionallyreleased into the environment, with a potential for devas

38、tating impact to thepublic,totheoperatorsemployees,towildlife,property,andtotheoperatorsreputation.Takingstepstopreventsuchreleasesandimprovereliabilityisbotheconomicaland,inmostcountries,mandated.Specifically, the consequences of a corrosion failure on a transmissionpipelineinclude:a114Injuries and

39、 loss of life and the financial, political, and personal straincausedbythetragedies.TheU.S.gastransmissionandhazardousliquidspipelineindustryreportedatotalof10seriousincidents(thoseinvolvingdeathorhospitalization)causedbypipelineleaksorfailuresfrom1990through2009.a114Forliquidpipelinesenvironmentald

40、amageaccompaniedby significantenvironmental fines, cleanup costs, and public outrage from the releaseof hazardous substances into potable water sources and sensitive envi-ronmentalareas.a114Liabilityfordamagetorealproperty.ReportedincidentsintheU.S.from2005to2010totaled$2.3billioninpropertydamage.a1

41、14Damage to public relations. Large incidents are well publicized in themediaandofteninspireregulatoryand/orlegislativeresponsefromgov-ernmentbodies.Thishaseconomicconsequencesfortheentireindustryinadditiontotheoperatorresponsiblefortheincident.a114Loss of product and potential loss of revenue that

42、can result from thedisruptionofservice.3P1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:64 GUIDE TO IMPROVING PIPELINE SAFETY BY CORROSION MANAGEMENTFIGURE 2 Diagram of Corrosion Cell5Becauseoftheunacceptablenatureoftheseconsequences,a significant invest-ment has been made in t

43、he mitigation, prevention, and control of corrosionin an attempt to avoid costs associated with pipeline failures. For example,the cost of corrosion-related failures on U.S. pipelines constitutes less than10%ofexpenses,whilecapitalandoperatingexpendituresforthesepreventiveand control measures is mor

44、e than 90% of the total expenses, representingapproximately$4.9to$7.7billionannually.4A Basic Overview of CorrosionCorrosion is the deterioration of a material, usually a metal, resulting froma chemical or electrochemical reaction with its environment. Most forms ofcorrosionoccurthroughtheformationo

45、fanelectrochemicalcellconsistingofthefollowingfourelements:(1) Anode(2) Cathode(3) Electrolyte(4) Metallic(electronic)pathFigure 2 diagrams the corrosion process. Metallic ions (such as Fe2+)leavethemetalattheanodeandentertheelectrolyte.Ionscarrythepositivechargethroughtheelectrolytetothecathode,whi

46、letheelectronscreatedattheanodeP1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:6An Overview of Corrosion Concerns on Pipelines 5travel through the metallic path to the cathode. The reaction at the cathodecompletesthecircuit.Metallossofthematerialoccursattheanode,asaresultofions

47、leavingthemetal.The anode and cathode are defined by a difference in electrical po-tential. This can be caused by local differences in the electrolyte, mi-croscopic variations in metal structure, different types of metals beingjoined together, an external source of imposed current (rectifier), or ot

48、hersources of electrical energy. This diversity leads to a wide variety of cor-rosion phenomena. Common corrosion mechanisms relevant to transmissionpipelines are covered below; for a brief description of other types of corro-sion, visit http:/events.nace.org/library/articles/corrosion101.asp.5Corro

49、siononpipelinesisgenerallycategorizedasexternalcorrosion,internalcorrosion,orenvironmentallyassistedcracking(EAC).External CorrosionEven relatively dry soils may contain enough moisture to serve as the elec-trolyteinacorrosioncell.Externalcorrosionofburiedpipelinesis influencedby a number of factors such as external coating condition, ion concentra-tions in the soil, soil particle size, soil moisture content, proximity to otherburied structures, stray direct current (DC), and even induced alternati

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1