NACE GUD IMPRO PIPLN SAF-2011 Guide to IMPROVING PIPELINE SAFETY by Corrosion Management.pdf

上传人:deputyduring120 文档编号:835759 上传时间:2019-02-20 格式:PDF 页数:99 大小:1.56MB
下载 相关 举报
NACE GUD IMPRO PIPLN SAF-2011 Guide to IMPROVING PIPELINE SAFETY by Corrosion Management.pdf_第1页
第1页 / 共99页
NACE GUD IMPRO PIPLN SAF-2011 Guide to IMPROVING PIPELINE SAFETY by Corrosion Management.pdf_第2页
第2页 / 共99页
NACE GUD IMPRO PIPLN SAF-2011 Guide to IMPROVING PIPELINE SAFETY by Corrosion Management.pdf_第3页
第3页 / 共99页
NACE GUD IMPRO PIPLN SAF-2011 Guide to IMPROVING PIPELINE SAFETY by Corrosion Management.pdf_第4页
第4页 / 共99页
NACE GUD IMPRO PIPLN SAF-2011 Guide to IMPROVING PIPELINE SAFETY by Corrosion Management.pdf_第5页
第5页 / 共99页
点击查看更多>>
资源描述

1、 P1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21GuidetoImprovingPipelineSafetybyCorrosionManagementNatural Gas and Hazardous LiquidTransmission Pipelines1440SouthCreekDriveHouston,Texas77084iP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21C2011byNACEInt

2、ernationalLibraryofCongressCataloguinginPublicationDataHevle,Drew.Guidetoimprovingpipelinesafetybycorrosionmanagement/DrewHevle.1sted.p.cm.Includesbibliographicalreferencesandindex.ISBN1-57590-243-51.PetroleumpipelinesMaintenanceandrepair. 2.PetroleumpipelinesCorrosion.I.NACEInternational. II.Title.

3、TN879.58.H48 2011665.7prime440289dc23 2011040780ISBN:1-57590-243-5PrintedintheUnitedStatesofAmerica.Allrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinanyformwithoutpermissionofthecopyrightowners.NeitherNACEInternational,itsofficers, directors,ormembersthereofacceptanyresponsibilityforthe

4、useofthemethodsandmaterialsdiscussedherein.Theinformationisadvisoryonlyandtheuseofthematerialsandmethodsissolelyattheriskoftheuser.NACEInternational1440SouthCreekDriveHouston,Texas77084http:/www.nace.orgiiP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21ContentsForeword vPrefac

5、e vii1 Introduction 12 An Overview of Corrosion Concerns on Pipelines 33 Pipeline Corrosion Management 94 Corrosion Threat Assessment 135 Economic Considerations and Risk Evaluation 156 Mitigating Corrosion Risk 217 Integrity Assessments 398 Remediation 499 Program Effectiveness 59AppendixA:NetPrese

6、ntValueExplanationandExample 69AppendixB:EconomicsofCorrosion 73AppendixC:SelectAbovegroundCoatingStandards 81AppendixD:Termsand Definitions 89Index 93iiiP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21ForewordPipelinesarethesafestformoftransportation,andacriticalpartofourcoun

7、-trysinfrastructure.Pipelinesplayasignificant roleinthedeliveryofenergytoeveryone reading this and likely will for the span of each readers entire life-time.Pipelinesareplayinganincreasingroleinnontraditionalareas,includingalternative fuels such as biofuels and environmental activities such as carbo

8、nsequestration.Pipelinesareheretostayandaresafe.Thatbeingsaid,thereiscertainlyroomforimprovementinpipelinesafety.Ultimatelysocietydictatesthe level of public safety expected. Society balances the pressures of highersafety standards with the additional costs that those standards typically entailandle

9、tsindustryknowindirectlythroughtheirgovernmentrepresentatives,themedia,andincreasingly,directlythroughsocialmedia,litigation,andactivism.Oftenthegovernmentrespondstosocietysdemandforhighersafetystandardsbyissuingnewregulationsforminimumstandards.Sometimesthedriversforincreases in levels of safety ar

10、e technolog s becoming more affordable. Inie1984, New York State passed the first U.S. law requiring seat belt use in pas-sengercars.Seatbeltstodaysaveover11,000liveseveryyearintheU.S.alone.Seat belts evolved into passive restraints including airbags, anti-lock brakes,stability control systems, and

11、many other safety systems. Today most of uscantevenimagineatimewhendrivingwithoutsecuringourchildreninchildsafetyseatswascommonpractice.PipelinesafetyintheUnitedStateshasevolvedinaformofpunctuatedequilibrium. The stasis has been broken up by rare and rapid events driven(forthemostpart)bypipelinefail

12、ureincidents.CongresscreatedtheOffice ofPipelineSafety(OPS)in1968tooverseeandimplementpipelinesafetyregu-lations.The first statuteregulatingpipelinesafetywastheNaturalGasPipelineSafetyActof1968,andCongresslateraddedliquidpipelinestothestatuteinvP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan Nove

13、mber8,2011 14:21vi FOREWORDthePipelineSafetyActof1979.Thesetwoeventswerelargelydrivenbyanatu-ralgasexplosionin1965inNatchitoches,Louisiana,thatkilled17people.Thecauseofthefailurewasstresscorrosioncracking,afailuremechanismthathadnotbeenattributedtopipelinefailuresbeforethisincident.NACEInternational

14、played a part by developing and publishing its first standard, SP0169 (knownas RP0169 at that time), “Control of External Corrosion on Underground orSubmergedMetallicPipingSystems,”thatthecorrosioncontrolportionsofthenew Pipeline Safety Regulations were in part based on. More recent pipelinefailures

15、suchasthoseinBellingham,Washington,andCarlsbad,NewMexico,drovethePipelineSafetyImprovementActof2002,andrecentfailuresintheGulf of Mexico, in Marshall, Michigan, and in San Bruno, California, willcertainlymandatemorechangestopipelinesafetyregulationsandstandards.Why do pipeline failures generate such

16、 notoriety? Motor vehicle acci-dentskillmorethan45,000peopleperyearintheU.S.,butafatalcarcrashisntnational news like a fatality caused by a pipeline failure. Incidents related topower lines are much less notorious, and typically around 100 people in theU.S. are killed every year, whereas many fewer

17、people are killed in pipelineincidents. One reason is the record of success that pipeline safety has had todate similar to the affliction of the airline industry, where the expectation of, safetyissohighthatanyincidentatallbecomesnewsworthy.Anotherreasonmaybethatpowerlinesareahazardthatcanbeseenandu

18、nderstood,butmanypeoplearenotawareoftheburiedpipelinesnearthem.Much of the low-hanging fruit of pipeline safety has already beenplucked.Thereisalwaysroomforimprovement,buttherearenoeasyanswers,and no paradigm-shifting technologies on the immediate horizon. Improve-mentsinpipelinesafetywillhavetobema

19、debysmallimprovementsinalargenumberofareas.Thesetypesofimprovementslendthemselvestocomprehen-siveprograms,toensurethatoptimumdecisionsaremadeateachstageofthepipelineslife.PipelineCorrosionManagementaspresentedinthisdocumentisintendedtoprovideacomprehensiveprocessforensuringthateachdecisionrelated to

20、 managing corrosion on pipelines is fully considered. Pipelines areplaying an increasing role in our energy infrastructure, societys expectationsforpublicsafetyareeverincreasing,andcontinuousimprovementinmanagingthreatstopipelineintegritysuchascorrosionisessential.DrewHevleManager,CorrosionControlEl

21、PasoCorporationTG370ChairP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21PrefaceConsidering the investment that owners make to build, maintain, and op-erate carbon steel onshore transmission pipelines, hereinafter referred to as“pipelines,”aswellastheriskandhazardsofapipelinef

22、ailure,itisimperativethatownersmanagethreatstopipelineintegrity.Aprincipalthreattopipelineintegrityiscorrosion.Transmissionpipelinesareprimarilyconstructedofcar-bonsteel,andcorrosionisatime-dependentthreatthatcausestheintegrityoftransmission pipelines to deteriorate if left unchecked. To maintain pi

23、pelineintegrity,aconcerteddesign,maintenance,andrepairprogramaddressingcor-rosionthreatsshouldbeimplemented.Theprimarygoalofthisguideistoprovidepipelineindustrymanagersand nontechnical personnel with an understanding of the basic issues andrequirementsformanagingcorrosionthreatstoonshoretransmission

24、pipelines.Itisunderstoodthatmostownershaveintegritymanagementprogramsinplacethat deal at some level with corrosion threats, and this guide is not intendedto replace these programs but to supplement those programs by providing afoundationalunderstandingofthefollowingconcepts:a114Basiccorrosionthreats

25、totransmissionpipelines,a114Risksposedbycorrosionthreats,a114Corrosionmitigationstrategies,a114Assessmentmethodologies,a114Identifyingandimplementingremediationactivities,anda114Methodsforevaluatingtheeffectivenessofaprogram.This guide is not intended to provide step-by-step instructions for managin

26、gpipeline corrosion; instead it outlines and identifies the essential componentsofaPipelineCorrosionManagementProgramandpresentsconsiderationsanddecision-making tools for developing and implementing a program. OwnersviiP1:KpBNABK006-FM.tex nabk006/NACE Printer:Sheridan November8,2011 14:21viii PREFA

27、CEcan develop their own programs based on their needs and can leverage thisguide,andcorrespondingreferences,asavailableresources.This guide has been prepared by Task Group 370, “Pipeline CorrosionManagement,” which is administered by Specific Technology Group (STG)35,“Pipelines,Tanks,andUndergroundS

28、ystems.”ThisguideispublishedbyNACEundertheauspicesofSTG35.P1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:6SECTION 1IntroductionWith origins dating back to approximately 1,000 B.C. (with the Phoeniciansfirst using a form of pipeline to transport water), pipelines have become on

29、eofthemostreliable,cost-effective,andsafestmodesoftransportingvitalcom-modities. Today, an elaborate network of pipelines can be found in nearlyeverydevelopedcountryaroundtheworld,withmorethan1.35millionmiles(2.17millionkm)ofoilandgaspipelinesworldwide.Thisvastnetworkhelpsdelivermorethan50%oftheworl

30、dsenergysupply.1Ensuringtheintegrityofthis infrastructure is paramount to delivering this critical energy source to itsvarioususersandthecommunitiesthatdependonthem.Pipelinesarerecognizedasbeingbyfarthesafestmodeoftransportingnatural gas and hazardous liquids, with fatalities resulting from accident

31、s onpipelines occurring much less often than accidents caused by transportationof goods by truck or barge. Fires or explosions are 35 times more likely perbarrel of oil transported by vehicle than when oil is transported by pipeline.2However,despitebeingoneofthesafestmodesoftransportation,pipelinesa

32、resubjecttoavarietyofthreatsandaccidentsthatcanresultinpropertydamage,injury, loss of life, or environmental damage. Corrosion remains a constantthreat to the integrity of pipelines, accounting for over 20% of all significanttransmissionincidentsintheU.S.3Corrosion attacks the steel walls of a pipel

33、ine, reducing its capacityto retain pressure. If corrosion is left unchecked, the resulting failure of thepipe wall can rapidly release oil or gas into the environment, causing fire andenvironmentaldamage.Figure1showsapipelinefailurecausedbycorrosion.This guide presents a defined process for the man

34、agement of corrosionspecific topipelinescarryingnaturalgasandhazardousliquids.Tohelp define1P1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:62 GUIDE TO IMPROVING PIPELINE SAFETY BY CORROSION MANAGEMENTFIGURE 1 Picture of a Pipeline Failure Caused by Corrosionthis corrosion mana

35、gement process and provide context for the process, thisguideprovidesabasicoverviewofthefollowingtopics:(1) A high-level overview of the corrosion threats to onshore gas and haz-ardousliquidtransmissionpipelines;(2) Methodologyandprocessworkflowalongwitheconomicconsiderationstoassistinthecorrosionma

36、nagementdecision-makingprocess;(3) Approachestoevaluatetherisksposedbycorrosionthreats;and(4) Key mitigation, assessment, and remediation strategies to preservepipelineintegrityandreducetheriskfromcorrosionthreats.P1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:6SECTION 2AnOver

37、viewofCorrosionConcernsonPipelinesPipelinesarethesafestandmosteconomicalwaytotransportvaluablegasandliquidcommoditiessuchasnaturalgas,crudeoil, refined products,andlique-fied natural gas. These commodities may be hazardous when unintentionallyreleased into the environment, with a potential for devas

38、tating impact to thepublic,totheoperatorsemployees,towildlife,property,andtotheoperatorsreputation.Takingstepstopreventsuchreleasesandimprovereliabilityisbotheconomicaland,inmostcountries,mandated.Specifically, the consequences of a corrosion failure on a transmissionpipelineinclude:a114Injuries and

39、 loss of life and the financial, political, and personal straincausedbythetragedies.TheU.S.gastransmissionandhazardousliquidspipelineindustryreportedatotalof10seriousincidents(thoseinvolvingdeathorhospitalization)causedbypipelineleaksorfailuresfrom1990through2009.a114Forliquidpipelinesenvironmentald

40、amageaccompaniedby significantenvironmental fines, cleanup costs, and public outrage from the releaseof hazardous substances into potable water sources and sensitive envi-ronmentalareas.a114Liabilityfordamagetorealproperty.ReportedincidentsintheU.S.from2005to2010totaled$2.3billioninpropertydamage.a1

41、14Damage to public relations. Large incidents are well publicized in themediaandofteninspireregulatoryand/orlegislativeresponsefromgov-ernmentbodies.Thishaseconomicconsequencesfortheentireindustryinadditiontotheoperatorresponsiblefortheincident.a114Loss of product and potential loss of revenue that

42、can result from thedisruptionofservice.3P1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:64 GUIDE TO IMPROVING PIPELINE SAFETY BY CORROSION MANAGEMENTFIGURE 2 Diagram of Corrosion Cell5Becauseoftheunacceptablenatureoftheseconsequences,a significant invest-ment has been made in t

43、he mitigation, prevention, and control of corrosionin an attempt to avoid costs associated with pipeline failures. For example,the cost of corrosion-related failures on U.S. pipelines constitutes less than10%ofexpenses,whilecapitalandoperatingexpendituresforthesepreventiveand control measures is mor

44、e than 90% of the total expenses, representingapproximately$4.9to$7.7billionannually.4A Basic Overview of CorrosionCorrosion is the deterioration of a material, usually a metal, resulting froma chemical or electrochemical reaction with its environment. Most forms ofcorrosionoccurthroughtheformationo

45、fanelectrochemicalcellconsistingofthefollowingfourelements:(1) Anode(2) Cathode(3) Electrolyte(4) Metallic(electronic)pathFigure 2 diagrams the corrosion process. Metallic ions (such as Fe2+)leavethemetalattheanodeandentertheelectrolyte.Ionscarrythepositivechargethroughtheelectrolytetothecathode,whi

46、letheelectronscreatedattheanodeP1:KpBNABK006-01.tex nabk006/NACE Printer:Sheridan November11,2011 14:6An Overview of Corrosion Concerns on Pipelines 5travel through the metallic path to the cathode. The reaction at the cathodecompletesthecircuit.Metallossofthematerialoccursattheanode,asaresultofions

47、leavingthemetal.The anode and cathode are defined by a difference in electrical po-tential. This can be caused by local differences in the electrolyte, mi-croscopic variations in metal structure, different types of metals beingjoined together, an external source of imposed current (rectifier), or ot

48、hersources of electrical energy. This diversity leads to a wide variety of cor-rosion phenomena. Common corrosion mechanisms relevant to transmissionpipelines are covered below; for a brief description of other types of corro-sion, visit http:/events.nace.org/library/articles/corrosion101.asp.5Corro

49、siononpipelinesisgenerallycategorizedasexternalcorrosion,internalcorrosion,orenvironmentallyassistedcracking(EAC).External CorrosionEven relatively dry soils may contain enough moisture to serve as the elec-trolyteinacorrosioncell.Externalcorrosionofburiedpipelinesis influencedby a number of factors such as external coating condition, ion concentra-tions in the soil, soil particle size, soil moisture content, proximity to otherburied structures, stray direct current (DC), and even induced alternati

展开阅读全文
相关资源
猜你喜欢
  • ITU-T Y 2091-2011 Terms and definitions for next generation networks (Study Group 13)《下一代网络的术语和定义 13号研究组》.pdf ITU-T Y 2091-2011 Terms and definitions for next generation networks (Study Group 13)《下一代网络的术语和定义 13号研究组》.pdf
  • ITU-T Y 2111-2011 Resource and admission control functions in next generation networks (Study Group 13)《下一代网络中资源和许可控制功能 13号研究组》.pdf ITU-T Y 2111-2011 Resource and admission control functions in next generation networks (Study Group 13)《下一代网络中资源和许可控制功能 13号研究组》.pdf
  • ITU-T Y 2112-2007 A QoS control architecture for Ethernet-based IP access networks《基于以太网的IP访问网络用QoS控制体系结构 研究组13》.pdf ITU-T Y 2112-2007 A QoS control architecture for Ethernet-based IP access networks《基于以太网的IP访问网络用QoS控制体系结构 研究组13》.pdf
  • ITU-T Y 2113-2009 Ethernet QoS control for next generation networks (Study Group 13)《下一代网络的以太网服务质量(QoS)控制 13号研究组》.pdf ITU-T Y 2113-2009 Ethernet QoS control for next generation networks (Study Group 13)《下一代网络的以太网服务质量(QoS)控制 13号研究组》.pdf
  • ITU-T Y 2121-2008 Requirements for the support of flow-state-aware transport technology in NGN (Study Group 13)《下一代网络(NGN)中支持数据流状态传输技术的要求 13号研究组》.pdf ITU-T Y 2121-2008 Requirements for the support of flow-state-aware transport technology in NGN (Study Group 13)《下一代网络(NGN)中支持数据流状态传输技术的要求 13号研究组》.pdf
  • ITU-T Y 2122 AMD 1-2011 Flow Aggregate Information Exchange Functions in Next Generation Networks Amendment 1 Information Model (Study Group 13)《(预发布)下一代网络中流量会聚信息交换功能 修改件1 信息模型》.pdf ITU-T Y 2122 AMD 1-2011 Flow Aggregate Information Exchange Functions in Next Generation Networks Amendment 1 Information Model (Study Group 13)《(预发布)下一代网络中流量会聚信息交换功能 修改件1 信息模型》.pdf
  • ITU-T Y 2122-2009 Flow aggregate information exchange functions in NGN (Study Group 13)《下一代网络(NGN)中的流量汇聚信息交换功能 13号研究组》.pdf ITU-T Y 2122-2009 Flow aggregate information exchange functions in NGN (Study Group 13)《下一代网络(NGN)中的流量汇聚信息交换功能 13号研究组》.pdf
  • ITU-T Y 2171 FRENCH-2006 Admission control priority levels in Next Generation Networks《下一代网络的接入控制优先等级 13号研究组》.pdf ITU-T Y 2171 FRENCH-2006 Admission control priority levels in Next Generation Networks《下一代网络的接入控制优先等级 13号研究组》.pdf
  • ITU-T Y 2171 SPANISH-2006 Admission control priority levels in Next Generation Networks《下一代网络的接入控制优先等级 13号研究组》.pdf ITU-T Y 2171 SPANISH-2006 Admission control priority levels in Next Generation Networks《下一代网络的接入控制优先等级 13号研究组》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > 其他

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1