ImageVerifierCode 换一换
格式:PDF , 页数:52 ,大小:938.76KB ,
资源ID:836263      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836263.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-2340-1951 A survey of methods for determining stability parameters of an airplane from dynamic flight measurements《采用动态飞行测量测定飞机稳定性参数的调查方法》.pdf)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-2340-1951 A survey of methods for determining stability parameters of an airplane from dynamic flight measurements《采用动态飞行测量测定飞机稳定性参数的调查方法》.pdf

1、TECHNICALA SURVEY OF METHODS FORNOTE2340, :-.- P:-:;.-:.,” ,FE3,N. k.=.i.-*.-.,.DETRMINING STABILITYPARAMETERS OF AN AIRPLANE FROM DYNAMICFLIGHT MEASUREMENTSBy Harry GreenbergAmes Aeronautical LaboratoryMoffett Field, CaUf.WashingtonApril 1951-.:-,.=.Provided by IHSNot for ResaleNo reproduction or n

2、etworking permitted without license from IHS-,-,-TECH LIBRARY tiiFB, Nid1.TABLEOF CONTENTS 111111111111ilLlL51q2SUMMARY*.*.* a71 * *”INTRODUCTION. . . . . . . . . a71 = o= G=*= D* *o* a71NOTATION. . . . . . . . . . . a71 a71 a71 a71 *O s a71 a71 a71 a71 a71 a71 c a71 0*MATHEMATICALAND AERODYIWMICPRX

3、LIMINARIES. . . . . . . . .BasicAssumptions. . . . . . . . . . . . . . . . . . . a71 a71EquationsofMotionand Statementof “InverseProblemofAirplaneDynamics. . . . . . . . . . . . a71 . a71 a71 . . a71 a71TransferFunctionsforControlDeflectionInput. . . . . .COMPUTATIOI?OFDYNAMICPARAMETERS(TRANSFERCOEF

4、FICIENTS)FROMFLIGHl!DATA. . . . . . . . . . . . a71 . . a71 . a71Principleof LeastSquares . . . . . . . . . . . .Determinationof theParametersandTheirRelativeby Linearization. . . . . . . . . . . . . . . a71Methodsof Obtaininga FirstApproximationto theParameters. . . . . . . . . . . . . . . . . . .

5、 .a71a71.Accuracya71 a15a11a11a15a15a11a11Sinusoidal(frequency)response. . . . . . . . . . .Transientresponse. . . . . . . . . . . . . . . . a71 *(1)(2)(3)(4)DISCUSSION.Inspectionof thetransient. . . . . . . . . .Fouriertransform. . . . . . . . . . . . . . .Derivativemethod. . . . . . . . . . . . o

6、Pronysmethod. . . . . . . . . . . . . a71 . a71 “ComparisonofFourierTransformMethod,DerivativeMethod,andPronysMethodof ObtainingaFirstApproximation . . . . . . . . . . . . . . . .Page11356678810111113131415182020Provided by IHSNot for ResaleNo reproduction or networking permitted without license fro

7、m IHS-,-,-TABLEOF CONTENTS- Continued NACATN 231+0DeterminationofLiftDerivatives. . . . . . . . . . . .BasicLimitationsinDeterminationofMomentDerivatives. . . . . . . . . . . . . . . . . . . . . .InformationObtainedFromTailLoadMeasurements. . . Use ofNonaerodynamicForcingFunctions. .RelationBetweenS

8、taticandDynsmicTests .AerodynamicLag. . . . . . . . . . . . . .SuggestionsforFutureWork . . . . . . . .CONCLUDINGREMARKS.APPENDI X.*lm?EKENms. . . . .a71a71a15.a71a15a15.I.a71.a71a15. . . .a71a15a71a15.a71a15.,a71a15a71a15a15a71.a71a71.a71a71.a71. . . . . . . . *.* . .*.* .*. . . . . . . .a71a15a71a

9、15NUMERICALEXAMFLES(TABIJ3S-Iv).FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . .a71a71gage,212124242527292931363745?.a71Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NATIONALADVISORYCOMMITTEEFOR AERONAUTICSTECHNICALNOTE 23A SUKWEYOF MET

10、HODSFORDETERMININGSTABILITYPARAMETERSOF AN AIRPIANEFROMDYNAMICFLIGHTMEASUREMENTSBy HarryGreenbergSUMMARYVariousmethodsof reducingto stabilityparameterformtheresponseto sinusoidaland transientdisturbancesarediscussed,usingthesimplifiedlongitudinalmotionof an idealizedairplaneas an illus-trativeexampl

11、e. It is shownthattherearebasiclimitationsin thedeterminationof someof the stabilityderivativesas comparedwiththe%ransfez%?unctioncoefficients,whichare certaincombinationsof sta-bilityderivativesdirectlyrelatedto theairplaneresponse. Hencejmostof thereportis concernedwithmethodsof determiningtransfe

12、r-a71 functioncoefficientsratherthanstabilityderivatives.It is shownhowthemethodof leastsquarescanbe appliedto giveathedesiredparametersand alsotheratioof theirerrorto thatof thebasicdata. The determinationof theseparametersand theircorrespond-ing errorratiosisa nonlinearproblemwhichit is showncanbe

13、 solvedby linearizationusinga firstapproximationto theurilmownparameters.A numberof methodsof obtaininga goodfirstapproximation,whichalsoinvolvea leastsquaresprocedure,are explainedand illustratedin thenumericalexamples.Althoughthe examplesare confinedto a simplifiedcaseof longi-tudinalmotion,themet

14、hodspresentedareapplicablein generalto othermore complicatedtypesofmotion.INTRODUCTIONThe scarcityof reliabledataon the stabilitycharacteristicsofaircraftat transonicand supersonicspeedsandthe difficultiesofobtainingthis informationfromwind-tmel tests(particularlywithregardto dynamicparameters,sucha

15、s therotarydampingderivatives),haveacceleratedinterestinmethodsof obtainingsuchdatafromflighttests. Alsothe extensiveuse of automaticstabilizationand controlequipmentandtheuncertainand generallypoorerdymamic-stabilitycharacteristicsarisingfromthe use of unconventionalconfigurationsnecessitatecompreh

16、ensiveandrefinedmeasurementsof the stabilityderivatives.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACATN 23bIn thepast,limitedinformationhasbeenderivedfrommeasurementsof airplanecharacteristicsin steadywtraightand steady-turningflight. Recent

17、ly,frequency-responsemeasurementsto sinusoidalcontroldeflectionshavebeenemployedtoevaluateadditionaldynamic-stabilityparameters.Thebrieftestingperiodavailableduringflightsofmissilesandhig similartheoreticaland flight+testinvestigationsforthe lateralmotionshavealsobeenreported. Themethodof analysisof

18、reference1 is onlyapplicableto simpledynamicalsystems- thatis,systemswhichmathematicallyare similarto onewitha singledegreeoffreedom,and is incapableof reducingthestabilityparametersto thebasicstabilityderivativeform.Theobviousadvantage,fromthe standpointof testsplicityandtime,of usingtheresonseto a

19、 stepelevatorinputinsteadof thefrequency+esponsetestswas soonrealized,andtheworkreportedinreference2 showshowthe step-responsedatacanbe convertedintothefrequency-responseform. Subsequentwork (reference3) extendedthismethodto theresponseto a pulse elevator input. Anothermethodofanalysisof responseto

20、an arbitraryelevatormotionwas suggestedbyLoringandJonahof Chance-VoutAircraftCompany. Thismethoddoesnot requiretransferencefromthe Ttimedmainito the “frequencydomain”as is the casewithreferences1 through3, and isreferredtolaterin thisreportas the“derivativemethod.” In thisderivativemethodthereappear

21、sforthefirsttimetheapplicationof themethodof leastsquaresto obtainthemostreasonablevaluesof aLlaneparametersfromredundantmeasurements.Examinationof theavailableliteratureindicatesa lackof infopmationconcerningthegeneralmethodsof emalysisapplicabletomorecomplicatedsystems,forexample,systemswithmorede

22、greesof freedomorwithhighe=rder derivatives.The purposeof thepresentreportisto establishmoregeneralandrigorousmethodsfordeterminingaerdynamicparametersfromdynamicflightmeasurements.The followingprincipalandbasicproblemsare studied: therelationbetweenthenumberandtypeof appliedforcingfunctionsendmeasu

23、redresponsesandthe correspondingnumberand typeof determinableaerodynamicparameters;variousmethodsof convertingflightdatato a formsuitablefor9.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 23h0 3determinationof aerodynamicparameters;andthecor

24、rectapplicationofmthemethodof leastsquaresto computetheaerodynamicparameters. Althoughthemethodspresentedareapplicabletomorecomplicatedsystems,theexamplesin thepresentreportare confinedto the simpli-fiedlongitudinalmotionsof an idealizedairplanehorder to facilit-ate computations.NOTATIONGeneralaatA,

25、B9 D. 8eE%E1geIyLL.La.Lbangleof attack,radiansangleof attackof tail,radiansi and out-of-phasecomponentsof oscillationdifferentialoperator()aEelevatordownwashresidualresidualresidualdeflection,radiansangle,radianserrorin an equationerrorin a realequationerrorin an imaginaryequationaccelerationdueto g

26、ravityangleof pitch,radianspitchingmomentof inertia,slug-feetsquaredrootsof characteristicstabilityequationliftforce,poundsProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4LtLvmMMaDaMb%MvPn$1R,qJstvV.wWqxu)N/WATN 2340taillift,poundsmassof airplane,sl

27、ugspitchingmoment,foot-pounds?IM.daaM35/ 2mrelativedensityparsmeter =( pS#a712 Xma.ss )densityXwing areaX wingchord) .normalacceleration,g unitsangularpitchingvelocity,radiansper secondamplitudeandphaseof complexnumbersumofweightedsquaresoftime,secondsvelocityof airplane,feettrimvelocityof airplane,

28、residualsper secondfeetper secondweightof airplaae,poundsweightingfactorindicatingaccuracyof q measurement,etc.longitudinaldistancebetweencenterof gravityandneutralpointof airplane,feetangularfrequency,radiansper secondProvided by IHSNot for ResaleNo reproduction or networking permitted without lice

29、nse from IHS-,-,-NACATN23m 5Subscriptsnc.mcalculatedmeasuredTransfer-TunctionCoefficientsdampingparameter(+q-MDct+ mv)VoCoq(Clq - Coa)+k stiffnessparameter(% %._=mVo Iy)MATHEMATICALANDAERODYNAMICPRELIMINARIESIn orderto illustratethe typesof dynamicparametersinvolvedandthe conditionsunderwhichtheymay

30、 be measured,the caseof longi-tudinalmotionof an airplanewillbe considered.In settingup theuequationsofmotion,the followingassumptionsaremade:.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-BasicAssumptions1. Linearequationswithconstantcoefficients2

31、 Measurementof forcingfunctionnot subjectto error3. Responsemeasurementssubjectonlyto randomerrorsk. Constantairspeedandlevelflight5. Aerodynamicliftequals + 8L6. Aerodynamicmamentequals cd theothersaremadeto simplifythenumericalexemplesgivenlaterandbecausetheydo approximatelydescribetheairplanemot

32、ionsin themaneuverswhicharecopsideredinthisreport.EquationsofMotionandStatementof tInverse”ProblemofAirplaneDynsmicsBasedon theaboveassumptions,thelongitudinalequationsofmotionmaybe written-anamely,giventheairplaneresponsein a, q,or n to a disturbance,to evaluatethe stabilityderivativesof theairplan

33、e.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-N/WATN 23koItwillbe provedthatthedetermination7laterin thisreport(seesection“Discussion”)of momentderivativesfromflightdatais subJectto certainbasictheoreticallimitations.Thereare ertaincombina-tionso

34、fmomentderivatives,however,whichdeterminethebehavioroftheairplanesndwhichcanbe computedfromtheflightdata. Thesecombinationsof derivativesare called“transfercoefficients”and aredefinedbelow. Mostof thisreportis devotedto thedeterminationofthesetramsfercoefficients.TransferFunctionsforControlDeflectio

35、nInputFor thiscase,inwhich L=5Ltionof equations(1)and (2) ist-xand M=5Mj theoperationalsol-% %!i+mVo Iv-.-8 j32+D % MIh+it( ) C andCoq suchthat.-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 2340.9, = /T(qfic) titLJo. is a minimum.Ifmorethan

36、oneairple responseismeasured,for example,thetransientresponsesin 9, q, andDq from t=O to T, then the valuesof theparameters b, k, Clq udcoq are tobe determinedsuchthatTf JTJTs = we (%r%) dt + Wq (%IHC)2 at + w (Dqm-Dqc)2dto 0 0is a minimum. Theweight w of a measurementis a numberindicatingtheaccurac

37、yof thatmeasurement(asregardsrandomerrors). Morespecifically,theweightis thereciprocalof themean squareerror(normaldistributionin the errorsof measurementassumed,seerefe cence 4) . If thefrequencyresponse(bothamplitudeandphase)ismeasuredovera rangeof frequenciesu, thentheparametersare tobe detemined

38、by theconditionthats = WR (%IAC)2 + I wp(%Pc)2is a minimumwherethe summationis takenoverthe frequenciesat whichtheresponseismeasured.The problemsabovearenonlinearin theunknowns b, k, Cl,andCo.The onlypracticalmethodof solutionis to linearizetheproblemanditeratefroma firstapproximation.For thecaseinw

39、hichonlyonequs.ntityis subjectto error(likethe firstcasementionedabove)themethodsof linearizationand iterationare explainedin reference4pages214and 84, respectively.Themethodof linearizationis discussedbrieflyinthe nextsectionand in theappendix. The subsequentsection(whichconstitutestheprincipalpart

40、of thisreport)dealswithmethods,mostof whichalsoinvolveleastsquaressolutions,of obtaininga goodfirstapproximation.The ideaof determiningtheparametersfroma trsnsientresponsebylinearizationand iterationfroma firstapproximationis dueto Shinbrotof AmesLaboratoryand is discussedand exploitedmore fullyin r

41、efez-ence5.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-10 NACATN23koDeterminationof theParametersandTheirRelativeAccuracyby LinearizationTo determinetheparametersby k Clqs=d COq from q and 5measurements,it is firstnecessaryto determineem initiala

42、pproxim somespecialtypesof inputfunctions(tipulse,step,and ramp)are shownin figure3. Severalmethodsofanalysis,of varyingdegreesof generalitywillbe explained.the(1)1.- If 5 becomesconstantaftera brieftransientperiod, b and k canbe determinedfrmnthedamping andperiodof theoscillations(assumingthatthe s

43、ystemislessthancriticallydamped). If T1J2 is thetimefor thefreeoscillationsto dampto halfamplitudeand P is theperiod,thenbIf, in addition,valueof 8 areIf thevaluesof_ 1.386 ati k_ 0.48 + 39.48%/2 T1/22 p2the steady-statevalue of q andthe steady-stateknown,thentheirratio / hencea slightlydifferentfre

44、quencyresponseisobtainedThe frequencyresponseobtainedas an intermediatestepinthecomputationof transfercoefficientsby thisprocedureis oftenitselfof interestinproblemsof automaticstabilization.The so-called“incompleteFouriertransforms” qe-titdt andf: e-titdt canalsobe usedto computetheparametersfroma

45、pulse.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 23h0 15.:,whichhasnotreacheda steadystateandfornonzeroinitialcondi-tions. AssumingthetransferfunctionC1qD+Coqs=5 D2+bD+kthenit canbe shownthatT(im)=+bim+kJ qe-itdt + e-o(DqT+bqT+iT)- Dqo- b

46、qo- iQo= (ch.p+coq) J 5e-imt dt + Clq8Te-iut- Clq?50*fromwhicha realand an imaginaryequationcanbe setup. Thesecanbe usedto setup foursimultaneousequationsusingcomputationsattwofrequencies,to get approximatevaluesfor b k clqandCoq.Ifmorethantwofrequenciesare involved,thenthemethodof leastsquarescanbe

47、 usedas in thecaseof frequency-responsemeasurements.(3) Derivativemethod.- Anothermethodfor computingthe transfercoefficientsfromthe transientresponseconsistsinusingthemeasuredvaluesof a sufficientnumberof higherderivativesof inputandresponsein theassumedtransferfunction. For example,if theassumed-f

48、ormof the transferfunctionis_=y(Di(o)ik tZ(Di(5)i C=q _2(DiifdTc =2 (DG)i(D20)ii io q iZ (Di(ib + z (e)i2k - tiZ(6)i(5)iCl - X(8)ii f 5dT Co =-z (G)i(D26)ii i qi o qiAn exampleof theapplicationof thederivativemethodto thedetermitionof theparametersfromtheresponse 6, IX3 and D% to a stepinputin 8 is shownin figure5, and workedout intableIII. Fora stepresponsethedifferentialequationrelating (3 and 5 i.sD2e+b

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1