NASA NACA-TN-2340-1951 A survey of methods for determining stability parameters of an airplane from dynamic flight measurements《采用动态飞行测量测定飞机稳定性参数的调查方法》.pdf

上传人:bowdiet140 文档编号:836263 上传时间:2019-02-20 格式:PDF 页数:52 大小:938.76KB
下载 相关 举报
NASA NACA-TN-2340-1951 A survey of methods for determining stability parameters of an airplane from dynamic flight measurements《采用动态飞行测量测定飞机稳定性参数的调查方法》.pdf_第1页
第1页 / 共52页
NASA NACA-TN-2340-1951 A survey of methods for determining stability parameters of an airplane from dynamic flight measurements《采用动态飞行测量测定飞机稳定性参数的调查方法》.pdf_第2页
第2页 / 共52页
NASA NACA-TN-2340-1951 A survey of methods for determining stability parameters of an airplane from dynamic flight measurements《采用动态飞行测量测定飞机稳定性参数的调查方法》.pdf_第3页
第3页 / 共52页
NASA NACA-TN-2340-1951 A survey of methods for determining stability parameters of an airplane from dynamic flight measurements《采用动态飞行测量测定飞机稳定性参数的调查方法》.pdf_第4页
第4页 / 共52页
NASA NACA-TN-2340-1951 A survey of methods for determining stability parameters of an airplane from dynamic flight measurements《采用动态飞行测量测定飞机稳定性参数的调查方法》.pdf_第5页
第5页 / 共52页
点击查看更多>>
资源描述

1、TECHNICALA SURVEY OF METHODS FORNOTE2340, :-.- P:-:;.-:.,” ,FE3,N. k.=.i.-*.-.,.DETRMINING STABILITYPARAMETERS OF AN AIRPLANE FROM DYNAMICFLIGHT MEASUREMENTSBy Harry GreenbergAmes Aeronautical LaboratoryMoffett Field, CaUf.WashingtonApril 1951-.:-,.=.Provided by IHSNot for ResaleNo reproduction or n

2、etworking permitted without license from IHS-,-,-TECH LIBRARY tiiFB, Nid1.TABLEOF CONTENTS 111111111111ilLlL51q2SUMMARY*.*.* a71 * *”INTRODUCTION. . . . . . . . . a71 = o= G=*= D* *o* a71NOTATION. . . . . . . . . . . a71 a71 a71 a71 *O s a71 a71 a71 a71 a71 a71 c a71 0*MATHEMATICALAND AERODYIWMICPRX

3、LIMINARIES. . . . . . . . .BasicAssumptions. . . . . . . . . . . . . . . . . . . a71 a71EquationsofMotionand Statementof “InverseProblemofAirplaneDynamics. . . . . . . . . . . . a71 . a71 a71 . . a71 a71TransferFunctionsforControlDeflectionInput. . . . . .COMPUTATIOI?OFDYNAMICPARAMETERS(TRANSFERCOEF

4、FICIENTS)FROMFLIGHl!DATA. . . . . . . . . . . . a71 . . a71 . a71Principleof LeastSquares . . . . . . . . . . . .Determinationof theParametersandTheirRelativeby Linearization. . . . . . . . . . . . . . . a71Methodsof Obtaininga FirstApproximationto theParameters. . . . . . . . . . . . . . . . . . .

5、. .a71a71.Accuracya71 a15a11a11a15a15a11a11Sinusoidal(frequency)response. . . . . . . . . . .Transientresponse. . . . . . . . . . . . . . . . a71 *(1)(2)(3)(4)DISCUSSION.Inspectionof thetransient. . . . . . . . . .Fouriertransform. . . . . . . . . . . . . . .Derivativemethod. . . . . . . . . . . . o

6、Pronysmethod. . . . . . . . . . . . . a71 . a71 “ComparisonofFourierTransformMethod,DerivativeMethod,andPronysMethodof ObtainingaFirstApproximation . . . . . . . . . . . . . . . .Page11356678810111113131415182020Provided by IHSNot for ResaleNo reproduction or networking permitted without license fro

7、m IHS-,-,-TABLEOF CONTENTS- Continued NACATN 231+0DeterminationofLiftDerivatives. . . . . . . . . . . .BasicLimitationsinDeterminationofMomentDerivatives. . . . . . . . . . . . . . . . . . . . . .InformationObtainedFromTailLoadMeasurements. . . Use ofNonaerodynamicForcingFunctions. .RelationBetweenS

8、taticandDynsmicTests .AerodynamicLag. . . . . . . . . . . . . .SuggestionsforFutureWork . . . . . . . .CONCLUDINGREMARKS.APPENDI X.*lm?EKENms. . . . .a71a71a15.a71a15a15.I.a71.a71a15. . . .a71a15a71a15.a71a15.,a71a15a71a15a15a71.a71a71.a71a71.a71. . . . . . . . *.* . .*.* .*. . . . . . . .a71a15a71a

9、15NUMERICALEXAMFLES(TABIJ3S-Iv).FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . .a71a71gage,212124242527292931363745?.a71Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NATIONALADVISORYCOMMITTEEFOR AERONAUTICSTECHNICALNOTE 23A SUKWEYOF MET

10、HODSFORDETERMININGSTABILITYPARAMETERSOF AN AIRPIANEFROMDYNAMICFLIGHTMEASUREMENTSBy HarryGreenbergSUMMARYVariousmethodsof reducingto stabilityparameterformtheresponseto sinusoidaland transientdisturbancesarediscussed,usingthesimplifiedlongitudinalmotionof an idealizedairplaneas an illus-trativeexampl

11、e. It is shownthattherearebasiclimitationsin thedeterminationof someof the stabilityderivativesas comparedwiththe%ransfez%?unctioncoefficients,whichare certaincombinationsof sta-bilityderivativesdirectlyrelatedto theairplaneresponse. Hencejmostof thereportis concernedwithmethodsof determiningtransfe

12、r-a71 functioncoefficientsratherthanstabilityderivatives.It is shownhowthemethodof leastsquarescanbe appliedto giveathedesiredparametersand alsotheratioof theirerrorto thatof thebasicdata. The determinationof theseparametersand theircorrespond-ing errorratiosisa nonlinearproblemwhichit is showncanbe

13、 solvedby linearizationusinga firstapproximationto theurilmownparameters.A numberof methodsof obtaininga goodfirstapproximation,whichalsoinvolvea leastsquaresprocedure,are explainedand illustratedin thenumericalexamples.Althoughthe examplesare confinedto a simplifiedcaseof longi-tudinalmotion,themet

14、hodspresentedareapplicablein generalto othermore complicatedtypesofmotion.INTRODUCTIONThe scarcityof reliabledataon the stabilitycharacteristicsofaircraftat transonicand supersonicspeedsandthe difficultiesofobtainingthis informationfromwind-tmel tests(particularlywithregardto dynamicparameters,sucha

15、s therotarydampingderivatives),haveacceleratedinterestinmethodsof obtainingsuchdatafromflighttests. Alsothe extensiveuse of automaticstabilizationand controlequipmentandtheuncertainand generallypoorerdymamic-stabilitycharacteristicsarisingfromthe use of unconventionalconfigurationsnecessitatecompreh

16、ensiveandrefinedmeasurementsof the stabilityderivatives.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACATN 23bIn thepast,limitedinformationhasbeenderivedfrommeasurementsof airplanecharacteristicsin steadywtraightand steady-turningflight. Recent

17、ly,frequency-responsemeasurementsto sinusoidalcontroldeflectionshavebeenemployedtoevaluateadditionaldynamic-stabilityparameters.Thebrieftestingperiodavailableduringflightsofmissilesandhig similartheoreticaland flight+testinvestigationsforthe lateralmotionshavealsobeenreported. Themethodof analysisof

18、reference1 is onlyapplicableto simpledynamicalsystems- thatis,systemswhichmathematicallyare similarto onewitha singledegreeoffreedom,and is incapableof reducingthestabilityparametersto thebasicstabilityderivativeform.Theobviousadvantage,fromthe standpointof testsplicityandtime,of usingtheresonseto a

19、 stepelevatorinputinsteadof thefrequency+esponsetestswas soonrealized,andtheworkreportedinreference2 showshowthe step-responsedatacanbe convertedintothefrequency-responseform. Subsequentwork (reference3) extendedthismethodto theresponseto a pulse elevator input. Anothermethodofanalysisof responseto

20、an arbitraryelevatormotionwas suggestedbyLoringandJonahof Chance-VoutAircraftCompany. Thismethoddoesnot requiretransferencefromthe Ttimedmainito the “frequencydomain”as is the casewithreferences1 through3, and isreferredtolaterin thisreportas the“derivativemethod.” In thisderivativemethodthereappear

21、sforthefirsttimetheapplicationof themethodof leastsquaresto obtainthemostreasonablevaluesof aLlaneparametersfromredundantmeasurements.Examinationof theavailableliteratureindicatesa lackof infopmationconcerningthegeneralmethodsof emalysisapplicabletomorecomplicatedsystems,forexample,systemswithmorede

22、greesof freedomorwithhighe=rder derivatives.The purposeof thepresentreportisto establishmoregeneralandrigorousmethodsfordeterminingaerdynamicparametersfromdynamicflightmeasurements.The followingprincipalandbasicproblemsare studied: therelationbetweenthenumberandtypeof appliedforcingfunctionsendmeasu

23、redresponsesandthe correspondingnumberand typeof determinableaerodynamicparameters;variousmethodsof convertingflightdatato a formsuitablefor9.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 23h0 3determinationof aerodynamicparameters;andthecor

24、rectapplicationofmthemethodof leastsquaresto computetheaerodynamicparameters. Althoughthemethodspresentedareapplicabletomorecomplicatedsystems,theexamplesin thepresentreportare confinedto the simpli-fiedlongitudinalmotionsof an idealizedairplanehorder to facilit-ate computations.NOTATIONGeneralaatA,

25、B9 D. 8eE%E1geIyLL.La.Lbangleof attack,radiansangleof attackof tail,radiansi and out-of-phasecomponentsof oscillationdifferentialoperator()aEelevatordownwashresidualresidualresidualdeflection,radiansangle,radianserrorin an equationerrorin a realequationerrorin an imaginaryequationaccelerationdueto g

26、ravityangleof pitch,radianspitchingmomentof inertia,slug-feetsquaredrootsof characteristicstabilityequationliftforce,poundsProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4LtLvmMMaDaMb%MvPn$1R,qJstvV.wWqxu)N/WATN 2340taillift,poundsmassof airplane,sl

27、ugspitchingmoment,foot-pounds?IM.daaM35/ 2mrelativedensityparsmeter =( pS#a712 Xma.ss )densityXwing areaX wingchord) .normalacceleration,g unitsangularpitchingvelocity,radiansper secondamplitudeandphaseof complexnumbersumofweightedsquaresoftime,secondsvelocityof airplane,feettrimvelocityof airplane,

28、residualsper secondfeetper secondweightof airplaae,poundsweightingfactorindicatingaccuracyof q measurement,etc.longitudinaldistancebetweencenterof gravityandneutralpointof airplane,feetangularfrequency,radiansper secondProvided by IHSNot for ResaleNo reproduction or networking permitted without lice

29、nse from IHS-,-,-NACATN23m 5Subscriptsnc.mcalculatedmeasuredTransfer-TunctionCoefficientsdampingparameter(+q-MDct+ mv)VoCoq(Clq - Coa)+k stiffnessparameter(% %._=mVo Iy)MATHEMATICALANDAERODYNAMICPRELIMINARIESIn orderto illustratethe typesof dynamicparametersinvolvedandthe conditionsunderwhichtheymay

30、 be measured,the caseof longi-tudinalmotionof an airplanewillbe considered.In settingup theuequationsofmotion,the followingassumptionsaremade:.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-BasicAssumptions1. Linearequationswithconstantcoefficients2

31、. Measurementof forcingfunctionnot subjectto error3. Responsemeasurementssubjectonlyto randomerrorsk. Constantairspeedandlevelflight5. Aerodynamicliftequals + 8L6. Aerodynamicmamentequals cd theothersaremadeto simplifythenumericalexemplesgivenlaterandbecausetheydo approximatelydescribetheairplanemot

32、ionsin themaneuverswhicharecopsideredinthisreport.EquationsofMotionandStatementof tInverse”ProblemofAirplaneDynsmicsBasedon theaboveassumptions,thelongitudinalequationsofmotionmaybe written-anamely,giventheairplaneresponsein a, q,or n to a disturbance,to evaluatethe stabilityderivativesof theairplan

33、e.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-N/WATN 23koItwillbe provedthatthedetermination7laterin thisreport(seesection“Discussion”)of momentderivativesfromflightdatais subJectto certainbasictheoreticallimitations.Thereare ertaincombina-tionso

34、fmomentderivatives,however,whichdeterminethebehavioroftheairplanesndwhichcanbe computedfromtheflightdata. Thesecombinationsof derivativesare called“transfercoefficients”and aredefinedbelow. Mostof thisreportis devotedto thedeterminationofthesetramsfercoefficients.TransferFunctionsforControlDeflectio

35、nInputFor thiscase,inwhich L=5Ltionof equations(1)and (2) ist-xand M=5Mj theoperationalsol-% %!i+mVo Iv-.-8 j32+D % MIh+it( ) C andCoq suchthat.-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 2340.9, = /T(qfic) titLJo. is a minimum.Ifmorethan

36、oneairple responseismeasured,for example,thetransientresponsesin 9, q, andDq from t=O to T, then the valuesof theparameters b, k, Clq udcoq are tobe determinedsuchthatTf JTJTs = we (%r%) dt + Wq (%IHC)2 at + w (Dqm-Dqc)2dto 0 0is a minimum. Theweight w of a measurementis a numberindicatingtheaccurac

37、yof thatmeasurement(asregardsrandomerrors). Morespecifically,theweightis thereciprocalof themean squareerror(normaldistributionin the errorsof measurementassumed,seerefe cence 4) . If thefrequencyresponse(bothamplitudeandphase)ismeasuredovera rangeof frequenciesu, thentheparametersare tobe detemined

38、by theconditionthats = WR (%IAC)2 + I wp(%Pc)2is a minimumwherethe summationis takenoverthe frequenciesat whichtheresponseismeasured.The problemsabovearenonlinearin theunknowns b, k, Cl,andCo.The onlypracticalmethodof solutionis to linearizetheproblemanditeratefroma firstapproximation.For thecaseinw

39、hichonlyonequs.ntityis subjectto error(likethe firstcasementionedabove)themethodsof linearizationand iterationare explainedin reference4pages214and 84, respectively.Themethodof linearizationis discussedbrieflyinthe nextsectionand in theappendix. The subsequentsection(whichconstitutestheprincipalpart

40、of thisreport)dealswithmethods,mostof whichalsoinvolveleastsquaressolutions,of obtaininga goodfirstapproximation.The ideaof determiningtheparametersfroma trsnsientresponsebylinearizationand iterationfroma firstapproximationis dueto Shinbrotof AmesLaboratoryand is discussedand exploitedmore fullyin r

41、efez-ence5.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-10 NACATN23koDeterminationof theParametersandTheirRelativeAccuracyby LinearizationTo determinetheparametersby k Clqs=d COq from q and 5measurements,it is firstnecessaryto determineem initiala

42、pproxim somespecialtypesof inputfunctions(tipulse,step,and ramp)are shownin figure3. Severalmethodsofanalysis,of varyingdegreesof generalitywillbe explained.the(1)1.- If 5 becomesconstantaftera brieftransientperiod, b and k canbe determinedfrmnthedamping andperiodof theoscillations(assumingthatthe s

43、ystemislessthancriticallydamped). If T1J2 is thetimefor thefreeoscillationsto dampto halfamplitudeand P is theperiod,thenbIf, in addition,valueof 8 areIf thevaluesof_ 1.386 ati k_ 0.48 + 39.48%/2 T1/22 p2the steady-statevalue of q andthe steady-stateknown,thentheirratio / hencea slightlydifferentfre

44、quencyresponseisobtainedThe frequencyresponseobtainedas an intermediatestepinthecomputationof transfercoefficientsby thisprocedureis oftenitselfof interestinproblemsof automaticstabilization.The so-called“incompleteFouriertransforms” qe-titdt andf: e-titdt canalsobe usedto computetheparametersfroma

45、pulse.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 23h0 15.:,whichhasnotreacheda steadystateandfornonzeroinitialcondi-tions. AssumingthetransferfunctionC1qD+Coqs=5 D2+bD+kthenit canbe shownthatT(im)=+bim+kJ qe-itdt + e-o(DqT+bqT+iT)- Dqo- b

46、qo- iQo= (ch.p+coq) J 5e-imt dt + Clq8Te-iut- Clq?50*fromwhicha realand an imaginaryequationcanbe setup. Thesecanbe usedto setup foursimultaneousequationsusingcomputationsattwofrequencies,to get approximatevaluesfor b k clqandCoq.Ifmorethantwofrequenciesare involved,thenthemethodof leastsquarescanbe

47、 usedas in thecaseof frequency-responsemeasurements.(3) Derivativemethod.- Anothermethodfor computingthe transfercoefficientsfromthe transientresponseconsistsinusingthemeasuredvaluesof a sufficientnumberof higherderivativesof inputandresponsein theassumedtransferfunction. For example,if theassumed-f

48、ormof the transferfunctionis_=y(Di(o)ik tZ(Di(5)i C=q _2(DiifdTc =2 (DG)i(D20)ii io q iZ (Di(ib + z (e)i2k - tiZ(6)i(5)iCl - X(8)ii f 5dT Co =-z (G)i(D26)ii i qi o qiAn exampleof theapplicationof thederivativemethodto thedetermitionof theparametersfromtheresponse 6, IX3 and D% to a stepinputin 8 is shownin figure5, and workedout intableIII. Fora stepresponsethedifferentialequationrelating (3 and 5 i.sD2e+b

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1