ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:641.50KB ,
资源ID:842069      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-842069.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]经济类专业学位联考综合能力数学基础(线性代数)模拟试卷4及答案与解析.doc)为本站会员(eveningprove235)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]经济类专业学位联考综合能力数学基础(线性代数)模拟试卷4及答案与解析.doc

1、经济类专业学位联考综合能力数学基础(线性代数)模拟试卷 4 及答案与解析单项选择题1 要使 部是线性方程组 Ax=0 的解,只要系数矩阵 A 为( )。2 设齐次线性方程组经高斯消元化成的阶梯型矩阵是 则自由变量不能取成( ) 。(A)x 4,x 5(B) x2,x 3(C) x2,x 4(D)x 1,x 33 设 1, 2, 3 是 Ax=0 的基础解系,则该方程组的基础解系还可以表示成( )。(A) 1, 2, 3 的一个等价向量组(B) 1, 2, 3 的一个等秩向量组(C) 1, 1+2, 1+2+3(D) 1 一 2, 2 一 3, 3 一 14 设 A 为 n 阶方阵,且秩(A)=

2、n 一 1, 1, 2 是 Ax=0 的两个不同的解向量,则Ax=0 的通解为( )。(A)k 1(B) k2(C) k(1 一 2)(D)k( 1+2)5 对于 n 元方程组,下列命题正确的是( )。(A)如果 Ax=0 只有零解,则 Ax=b 有唯一解(B)如果 Ax=0 有非零解,则 Ax=b 有无穷多解(C)如果 Ax=b 有两个不同的解,则 Ax=0 有无穷多解(D)Ax=b 有唯一解的充要条件是 r(A)=n6 已知 1, 2 是 Ax=b 的两个不同的解, 1, 2 是相应齐次方程组 Ax=0 的基础解系,k 1,k 2 是任意常数,则 Ax=b 的通解是( )。7 设 n 阶矩

3、阵 A 的伴随矩阵为 A*0,若 1, 2, 3, 4 是非齐次方程组 Ax=b 的互不相等的解,则对应的其次方程组 Ax=0 的基础解系 ( )。(A)不存在(B)仅含一个非零解向量(C)含有两个线性无关的解向量(D)含有三个线性无关的解向8 n 阶矩阵 A 可逆的充分必要条件是( )。(A)任一行向量都是非零向量(B)任一列向量都是非零向量(C) Ax=b 有解(D)当 x0 时,Ax0,其中 x=(x1,x 2,,x n)T9 设 A 是 mn 矩阵,则下列命题正确的是( ) 。(A)如 mn,则 Ax=b 有无穷多解(B)如 Ax=0 只有零解则 Ax=b 有唯一解(C)如 A 有 n

4、 阶子式不为零,则 Ax=0 只有零解(D)AX=b 有唯一解的充分必要条件是 r(A)=n10 非齐次线性方程组 Ax=b 中未知量的个数为 n,方程组个数为 m,系数矩阵 A的秩为 r,则明天正确的是( )。(A)r=m 时,方程组 Ax=b 有解(B) r=n 时,方程组 Ax=b 有唯一解(C) m=n 时,方程组 Ax=b 有唯一解(D)rn 时,方程组 Ax=b 有无穷多解11 若线性方程组 无解,则 k=( )。(A)6(B) 3(C) 3(D)212 设线性无关的向量组 z1,z 2,z 3,z 4 可由向量组 1, 2, s 线性表示,则必有( )。(A) 1, 2, s 线

5、性相关(B) 1, 2, s 线性无关(C) s4(D)s4填空题13 设 1, 2, s。是方程组 Ax=b 的解,若 k11+k22+kss 也是 Ax=b 得解,则 k1,k 2,k s 应满足条件_。14 设 1, 2, 3 位 Ax=0 的基础解系,则 1 一 2,2-3, 3 一 1 也是 Ax=0 的基础解系的充要条件是_。15 齐次线性方程组 只有零解,则 k 应满足的条件是_。16 设 A 是 4 阶方阵,且秩(A)=2,则齐次线性方程组 A*x=0(A*是 A 得伴随矩阵)的基础解系所包含的线性无关解向量的个数为_。17 设 A、B 为三阶方阵,其中 且已知方阵 X,使得A

6、X=B,则 k=_18 已知方程组 总有解,则 应满足_。19 设 A 为三阶非零矩阵,B= 且 AB=0,则 Ax=0 的通解是_。20 设 A*是 A 的伴随矩阵,则 A*x=0 的通解是_。21 已知方程组 的通解是(1,21,0) T+k(一 1,2,一 1,1) T,则a=_。22 已知 如果矩阵方程 Ax=B 有解但不唯一,则a=_。计算题23 已知下列线性非齐次方程组(I),( )(1)求解方程组(I),用其求出的基础解析表示通解(2)当方程组中的参数 m,n,t 为何值时,(I)和()是同解方程组?24 设线性方程组 与方程 x1+2x2+x3=a 一 1 有公共解,求 a 的

7、值及所有公共解。25 问 为何值时,线性方程组 有解,并求出解的一般形式。26 解线性方程组27 设 (I)求满足 A2=1,A 23=1 的所有解向量2, 3。() 对于(I)中任意向量 2, 3,证明 1, 2, 3 线性无关。28 设 已知线性方程组 Ax=b 存在两个不同的解,(I)求,a 。 () 求方程组 Ax=b 的通解。29 设方程组 与方程组()x 1+2x2+x3=a-1 有公共解,求 a 的值及所有公共解。30 设方程组 ,问 m,k 为何值时,方程组有唯一解 ?有无穷多解,在无穷多解时。求出一般解。31 已知齐方程组 同解,求 a,b,c的值。32 设 问 为何值时(I

8、) 可以用1, 2, 3 唯一地线性表示。() 可由 1, 2, 3 线性表示,但表达式不唯一。() 不能用 1, 2, 3 线性表示。33 已知齐次线性方程组 试讨论a1,a 2,a n 和 b 满足何种关系式.(I)方程组仅有零解;()方程组有非零解在有非零解时,求此方程组的一个基础解系。34 设齐次方程组 其中 a0,b0,n2 是讨论 a,b 为何值时,方程组仅有零解、有无穷多解?在有无穷多解时,求出全部解,并用基础解系表示全部解。35 求齐次线性方程组 的全部解(要求用基础解系表示)。36 求线性方程组 的通解。经济类专业学位联考综合能力数学基础(线性代数)模拟试卷 4 答案与解析单

9、项选择题1 【正确答案】 A【知识模块】 数学基础2 【正确答案】 A【知识模块】 数学基础3 【正确答案】 C【知识模块】 数学基础4 【正确答案】 C【知识模块】 数学基础5 【正确答案】 C【知识模块】 数学基础6 【正确答案】 B【知识模块】 数学基础7 【正确答案】 B【知识模块】 数学基础8 【正确答案】 D【知识模块】 数学基础9 【正确答案】 C【知识模块】 数学基础10 【正确答案】 A【知识模块】 数学基础11 【正确答案】 A【知识模块】 数学基础12 【正确答案】 C【知识模块】 数学基础填空题13 【正确答案】 k 1+k2+, ,+k s=1【知识模块】 数学基础1

10、4 【正确答案】 1【知识模块】 数学基础15 【正确答案】 【知识模块】 数学基础16 【正确答案】 4【知识模块】 数学基础17 【正确答案】 k=-2【知识模块】 数学基础18 【正确答案】 【知识模块】 数学基础19 【正确答案】 k 1(1,4,3) T+k2(一 2,3,1) T【知识模块】 数学基础20 【正确答案】 k 1(1,4,7) T+k2(2,5,8) T【知识模块】 数学基础21 【正确答案】 3【知识模块】 数学基础22 【正确答案】 a=-2【知识模块】 数学基础计算题23 【正确答案】 (1)对(I) 的增广矩阵进行初等行变换化为阶梯型有求得(I)的通解为(一

11、2,一 4,一 5,0) T+k(1,1,2,1) T(2)将 0=(一 2,一 4,一 5,0) T 代入(),得 m=2,n=4,t=6,则 () 为 将 1=(1,1,2,1) T 代入()的导出齐次方程 Bx=0 也满足,易证 1=(1,1,2,1) T 也是 Bx=0 的基础解系。又计算知 r(B)= =3,即方程 Bx=0 只有一个基础解系,Bx=b 有解 所以 Ax=0与 Bx=0 同解,又 0=(一 2,一 4,一 5,0) T 是(I)和()的同一个特解,故(I)和()同解。【知识模块】 数学基础24 【正确答案】 将与 联立,得则方程的解就是 与的公共解。对方程组的增广矩阵

12、作初等行变换,有若a=1,则 从而方程组的通解为 k(1,0,一 1)T,即为方程组与的公共解。若 a=2,则 从而方程组的通解为(0 ,1,一 1)T,即方程组与 的公共解。【知识模块】 数学基础25 【正确答案】 当 =1 是,方程组有解 x=(1,-1,0) T+k(一 1,2,1) T。【知识模块】 数学基础26 【正确答案】 x=(一 5,0,0 一 4,0) T+k1(一 3,1,0,0,0)T+k2(3,0,0,2,1) T。【知识模块】 数学基础27 【正确答案】 (I) 2=(0,0,1) T+k(1,一 1,2) T, 3= +t1(一1,1,0) T+t2(0,0,1)

13、T 其中 k,t 1,t 2 为任意常数。 ()| 1, 2, 3|= 0,所以1, 2, 3 必线性无关。【知识模块】 数学基础28 【正确答案】 (I)=一 1,a=一 2,()通解为 +k(1,0,1) T,其中 k 为任意常数。【知识模块】 数学基础29 【正确答案】 当 a=1 时,有公共解 k(一 1,0,1) T,当 a=2 时,有公共解(0,1,一 1)T。【知识模块】 数学基础30 【正确答案】 当 m一 1 时,方程组有唯一解;当 m=一 1 且 k1 时,方程组无解;当 m=一 1 且 k=1 时,方程组有多组解: +k(一 1,0,1) T,其中 k 为任意常数。【知识

14、模块】 数学基础31 【正确答案】 a=2, b=1, c=2。【知识模块】 数学基础32 【正确答案】 (I)当 0 且 一 3 时, 可以用 1, 2, 3 唯一地线性表示。 ()当 =0 时, 可由 1, 2, 3 线性表示,但表达式不唯一。 ()当 =一 3 时, 不能用 1, 2, 3 线性表示。【知识模块】 数学基础33 【正确答案】 方程组的系数行列式(I)b0 且|A|0,方程组仅有零解。( )当 b=0 时,原方程组的同解方程组为a1x1+a2x2+anxn=0。由 可知 ai(i=1,2, ,n) 不全为零,不妨设 a10,因为秩 r(A)=1,取 x2,x 3,x n 为

15、自由变量,可得方程组的基础解系为 1=(一a2,a 1,0, ,0) T, 2=(一 a3,0,a 1, ,0) T, , n-1=(一 an,0,0, ,a 1)T。由于秩r(A)=n1,则 Ax=0 的基础解系是 =(1,1,1, 1)T。【知识模块】 数学基础34 【正确答案】 方程组的系数行列式(I)当 ab且 a(1-n)b 时,方程组只有零解。()当 a=b 时,对系数矩阵做初等行变换,有得到基础解系: 1=(一1,1,0,0) T, 2=(一 1,0,1,0) T, , n-1=(一 1,0,0,1) T 方程组的通解为:k 11+k22+kn-1n-1 其中 k1,k 2,k

16、n-1 为任意常数()当 a=(1一 n)b 时,对系数矩阵做初等行变换,有得基础解系为:=(1,1,1,1) T。通解为 k,其中 k 为任意常数。【知识模块】 数学基础35 【正确答案】 对系数矩阵作初等行变换得r(A)=2,故此方程组的基础解系含解向量的个数为 42=2 选 x1,x 4 为自由未知数,令(x 2,x 4)T=(1,0)T,可求得 1=(一2,1,0,0) T 令(x 2,x 4)T=(0,1) T,可求得 2=(1,0,0,1) T 则 1, 2 是此方程组的基础解系故齐次线性方程组的通解为 k11+k22,其中 k1,k 2R。【知识模块】 数学基础36 【正确答案】 第一步,对增广矩阵做初等变换。第二步,求方程组的通解。r(A)=2,3 一 r(A)=1,导出组的一个基础解系为 方程组的一个特解为:【知识模块】 数学基础

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1