ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:588KB ,
资源ID:843608      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-843608.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]考研数学二(高等数学)模拟试卷21及答案与解析.doc)为本站会员(boatfragile160)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]考研数学二(高等数学)模拟试卷21及答案与解析.doc

1、考研数学二(高等数学)模拟试卷 21 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 f(x)一阶连续可导,且 f(0)=0,f(0)=1,则 =( )(A)e -1(B) e(C) e2(D)e 32 设 =-1,则在 x=a 处( )(A)可导,f(0)=0(B)可导,且 f(0)=-1(C)可导,且 f(0)=2(D)不可导3 设 f(x)在0,+)上连续,在(0,+)内可导,则( )二、填空题4 =_5 设 f(x)在 x=a 处可导,则 =_6 =_7 =_(其中 a 为常数)8 设 f(x,y)可微,且 f1(-1,3)=-2,f 2(-1,3)=

2、1 ,令 z=f(2x-y, ),则 dz (1,3)=_9 =_10 设 y=y(x)过原点,在原点处的切线平行于直线 y=2x+1,又 y=y(x)满足微分方程y“-6y+9y=e3x,则 y(x)=_三、解答题解答应写出文字说明、证明过程或演算步骤。11 求12 求13 确定正数 a,b,使得14 设15 设 f(x)在a,b上连续,在(a,b) 内可导(a0) 证明:存在 , (a,b),使得16 当 0x 时,证明: sinxx17 求18 19 当 x0 时,f(x)=x ,设 g(x)= 当 x0 时,求 0xf(t)g(x-t)dt20 求21 设 f(x)连续,证明: 0x0

3、tf(u)dudt=0xf(t)(x-t)dt22 求摆线 (0t2)的长度23 设 z=f(exsiny,x 2+y2),且 f(u,v)二阶连续可偏导,求24 计算二重积分 (x+y)dxdy,其中 D:x 2+y2x+y+125 求微分方程 的通解考研数学二(高等数学)模拟试卷 21 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 B【试题解析】 =ef(0)=e,选(B)【知识模块】 高等数学部分2 【正确答案】 B【试题解析】 由 =-1,根据极限的保号性,存在 0,当 0x-a 时,有 0,从而有 f(x)【知识模块】 高等数学部分3 【正

4、确答案】 D【试题解析】 取 f(x)= ,(A)不对;取 f(x)=cosx,显然 =10,(B)不对;取 f(x)=x,显然 =1,(C)不对,应选(D)事实上,取 =A,所以存在 X0,当 xX 时,f(x)-A ,从而 f(x)当 xX 时,f(x)-f(X)=f()(x-X) (x-X)(Xf(X)+ (x-X),两边取极限得=+,应选 (D)【知识模块】 高等数学部分二、填空题4 【正确答案】 43【试题解析】 【知识模块】 高等数学部分5 【正确答案】 10f(a)f(a)【试题解析】 因为 f(x)在 x=a 处可导,所以 f(x)在 x=a 处连续,于是=2f(a)5f(a)

5、=10f(a)f(a)【知识模块】 高等数学部分6 【正确答案】 【试题解析】 【知识模块】 高等数学部分7 【正确答案】 4【试题解析】 令 I=则 2I=【知识模块】 高等数学部分8 【正确答案】 -7dx+3dy【试题解析】 则 dz (1,3) =-7dx+3dy【知识模块】 高等数学部分9 【正确答案】 【试题解析】 【知识模块】 高等数学部分10 【正确答案】 2xe 3x+ x2e3x【试题解析】 由题意得 y(0)=0,y(0)=2,y“-6y+9y=e 3x 的特征方程为 2-6+9=0,特征值为 1=2=3,令 y“-6y+9y=e3x 的特解为 y0(x)=ax2e3x,

6、代入得 a= 故通解为y=(C1+C2x)e3x+ x2e3x由 y(0)=0,y(0)=2 得 C1=0,C 2=2,则 y(x)=2xe3x+ x2e3x【知识模块】 高等数学部分三、解答题解答应写出文字说明、证明过程或演算步骤。11 【正确答案】 【知识模块】 高等数学部分12 【正确答案】 【知识模块】 高等数学部分13 【正确答案】 显然 b=1,且=2,故 a=1【知识模块】 高等数学部分14 【正确答案】 方程 两边对 x 求导数得【知识模块】 高等数学部分15 【正确答案】 令 F(x)=x2,F(x)=2x0(a,整理得 ,再由微分中值定理,存在 (a,b),使得【知识模块】

7、 高等数学部分16 【正确答案】 令 f(x)=x-sinx,f(0)=0,f(x)=1-cosx0(0x ),由得 f(x)0(0 x ),即当 0x 时,sinxx;令g(x)=sinx- ,g(0)=g( )=0,g“(x)=-cosx0(0x ),即 g(x)在(0, )内上凸,由 得 g(x)0(0x ),故当 0x 时,sinx 【知识模块】 高等数学部分17 【正确答案】 【知识模块】 高等数学部分18 【正确答案】 【知识模块】 高等数学部分19 【正确答案】 0xf(t)g(x-t)dt x0f(x-u)g(u)(-du)=0xf(x-u)g(u)du,(1)当 0x时, 0

8、xf(t)g(x-t)dt=0x(x-u)sinudu=x-sinx(2)当 x 时, 0xf(t)g(x-t)dt= (x-u)sinudu=x-1,于是 0xf(t)g(x-t)dt=【知识模块】 高等数学部分20 【正确答案】 lnxd(1nx)= -11xdx=2 01xdx=1【知识模块】 高等数学部分21 【正确答案】 令 F(x)=0xf(t)dt,则 F(x)=f(x),于是 0x0tf(u)dt=0xF(t)dt, 0xf(t)(x-t)dt=x0xf(t)dt-0xtf(t)dt=xF(x)-0xtdF(t)dt=xF(x)-tF(t) 0x+0xF(t)dt=0xF(t)

9、dt 命颢得证【知识模块】 高等数学部分22 【正确答案】 ds=【知识模块】 高等数学部分23 【正确答案】 =f1exsiny+2xf2 =f1excosy+exsiny(f“11excosy+2yf“12)+2x(f“21excosy+2yf“22)=f1excosy+ f“11e2xsin2y+2ex(ysiny+xcosy)f“12+4xyf“22【知识模块】 高等数学部分24 【正确答案】 【知识模块】 高等数学部分25 【正确答案】 令 x+y=u,则 ,于是有 ,变量分离得,两边积分得 u-arctanu=x+C,所以原方程的通解为 y-arctan(x+y)=C【知识模块】 高等数学部分

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1