ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:439KB ,
资源ID:843652      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-843652.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]考研数学二(高等数学)模拟试卷61及答案与解析.doc)为本站会员(testyield361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]考研数学二(高等数学)模拟试卷61及答案与解析.doc

1、考研数学二(高等数学)模拟试卷 61 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 则 f(x 在 x=0 处( )(A)不连续(B)连续不可导(C)可导但 f(x)在 x=0 处不连续(D)可导且 f(x)在 x=0 处连续2 设 g(x)=0xf(u)du,其中 则 g(x)在(0,2)内( ) (A)单调减少(B)无界(C)连续(D)有第一类间断点二、填空题3 当 x0 时,x-sinxcos2xcx k,则 c=_,k=_4 设 f(x)在 x=2 处连续,且 ,则曲线 y=f(x)在(2,f(2)处的切线方程为_5 设 f(x)在 x=1 处一阶连续可

2、导,且 f(1)=-2,则 =_.6 设 f(x,y)可微,f(1 ,2)=2,f x(1,2)=3 ,f y(1,2)=4,(x)=fx,f(x,2x),则(1)=_7 设 f(sin2x)= =_.8 求 =_.9 计算 0a =_.10 设(ay-2xy 2)dx+(bx2y+4x+3)dy 为某个二元函数的全微分,则a=_,b=_三、解答题解答应写出文字说明、证明过程或演算步骤。11 确定常数 a,b,c ,使得12 设 f(x)在0,2上连续,且 f(0)=0,f(1)=1 证明:(1)存在 c(0,1),使得 f(c)=1-2c;(2)存在 0,2 ,使得 2f(0)+f(1)+3

3、f(2)=6f()13 设 f(x)在a,+)上连续,且 f(x)存在证明:f(x)在a,+)上有界14 设 x=x(t)由 sint-1x-te-u2du=0 确定,求15 设 f(x)在0,1上二阶可导,且 f(x)1(x 0,1),又 f(0)=f(1),证明:f(x) (x0,1)16 设 f(x)在a,b上二阶可导,且 f(x)0,取 xia,b(i=1,2,n)及ki0(i=1,2,n)且满足 k1+k2+kn=1证明: f(k 1x1+k2x2+knxn)k1f(x1)+k2f(x2)+knf(xn)17 设函数 其中 g(x)二阶连续可导,且 g(0)=1 (1)确定常数 a,

4、使得 f(x)在 x=0 处连续; (2)求 f(x); (3)讨论 f(x)在 x=0 处的连续性18 设 F(x)为 f(x)的原函数,且当 x0 时,f(x)F(x)= ,又 F(0)=1,F(x)0,求 f(x)19 设 f(x)在a,b上连续且单调增加,证明: abxf(x)dx abf(x)dx20 求椭圆 与椭圆 所围成的公共部分的面积21 设函数 z=f(u),方程 u=(u)+yxP(t)dt 确定甜为 x,y 的函数,其中 f(u),(u)可微,P(t),(u)连续,且 (u)1,求22 计算 01dxx2x(x2+23 设 f(x,y),g(x,y)在平面有界闭区域 D

5、上连续,且 g(x,y)0证明:存在(,)D ,使得 f(x,y)g(x,y)d=f( ,) g(x, y)d24 设 f(x)是连续函数(1)求初值问题 的解,其中 a0;(2)若f(x)k,证明:当 x0 时,有y(x) (eax-1)25 用变量代换 x=sint 将方程 (1-x2) 化为 y 关于 t 的方程,并求微分方程的通解考研数学二(高等数学)模拟试卷 61 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 D【试题解析】 显然 f(x)在 x=0 处连续,因为,所以f(x)在 x=0 处可导,当 x 0 时,f(x)=arctan 当

6、x0 时,所以 f(x)在 x=0 处连续,选(D) 【知识模块】 高等数学2 【正确答案】 C【试题解析】 因为 f(x)在(0 ,2)内只有第一类间断点,所以 g(x)在(0,2)内连续,选(C)【知识模块】 高等数学二、填空题3 【正确答案】 ,3【试题解析】 因为 x0 时,sinx=x- +o(x3),cos2x=1- +o(x2)=1-2x2+o(x2),sinxcos2x=x- x3+o(x3),所以 x-sinxcos2x= x3+o(x3) x3,故 c= ,k=3【知识模块】 高等数学4 【正确答案】 【试题解析】 由f(2)= ,则曲线 y=f(x)在点(2,f(2)处的

7、切线方程为 【知识模块】 高等数学5 【正确答案】 1【试题解析】 由 得【知识模块】 高等数学6 【正确答案】 47【试题解析】 因为 (x)=fxx,f(x,2x)+f yx,f(x,2x)f x(x,2x)+2f y(x,2x),所以 (1)=fx1,f(1 ,2)+f y1,f(1 ,2)f x(1, 2)+2fy(1,2) =3+4(3+8)=47【知识模块】 高等数学7 【正确答案】 arcsin 2 +C【试题解析】 由 f(sin2x)= ,得 f(x)= 于是【知识模块】 高等数学8 【正确答案】 【试题解析】 【知识模块】 高等数学9 【正确答案】 【试题解析】 【知识模块

8、】 高等数学10 【正确答案】 4,-2【试题解析】 令 P(x,y)=ay-2xy 2,Q(x ,y)=bx 2y+4x+3,因为(ay-2xy 2)dx+(bx2y+4x+3)dy 为某个二元函数的全微分,所以 =2bxy+4= =a-4xy,于是a=4,b=-2【知识模块】 高等数学三、解答题解答应写出文字说明、证明过程或演算步骤。11 【正确答案】 由 e-t2=1-t2+ +o(t4)得 0xe-t2dt=x- x3+ x5+o(x5),从而于是【知识模块】 高等数学12 【正确答案】 (1)令 (x)=f(x)-1+2x,(0)=-1,(1)=2,因为 (0)(1)0,所以存在 c

9、(0,1),使得 (c)=0,于是 f(c)=1-2c(2)因为 f(x)C0,2,所以 f(x)在0,2上取到最小值 m 和最大值 M,由 6m2f(0)+f(1)+3f(2)6M 得 mM,由介值定理,存在 0,2,使得=f(),于是 2f(0)+f(1)+3f(2)=6f()【知识模块】 高等数学13 【正确答案】 设 f(x)=A,取 0=1,根据极限的定义,存在 X00,当xX 0 时,f(x)-A1 ,从而有f(x)A+1又因为 f(x)在a,X 0上连续,根据闭区间上连续函数有界的性质,存在 k0,当 xa,X 0,有f(x)k取M=maxA +1,k,对一切的 xa,+),有f

10、(x)M 【知识模块】 高等数学14 【正确答案】 将 t=0 代入 sint-1x-1eu2du=0 得 1xe-u2du=0,再由 e-u20 得x=1,sint- 1x-te-u2du=0 两边对 t 求导得 cost-e-(x-t)2 =e+1,cost-e -(x-t)2 =0 两边再对 t 求导得-sint+2(x-t)e-(x-t)2 -e-(x-t)2 将 t=0,x=1 ,=2e2【知识模块】 高等数学15 【正确答案】 由泰勒公式得 f(0)=f(x)-f(x)x+ f(1)x2, 1(0,x),f(1)=f(x)+f(x)(1-x)+ f(2)(1-x)2, 2(x,1)

11、,两式相减,得 f(x)= f(1)x2- f(2)(1-x)2两边取绝对值,再由f(x)1,得f(x) x2+(1-x)2=【知识模块】 高等数学16 【正确答案】 令 x0=k1x1+k2x2+knxn,显然 x0a,b因为 f(x)0,所以f(x)f(x0)+f(x0)(x-x0),分别取 x=xi(i=1,2,n),得由 ki 0(i=1,2,n) ,上述各式分别乘以 ki(i=1,2,n),得将上述各式分别相加,得 f(x0)k1f(x1)+k2f(x2)+knf(xn),即 f(k1x1+k2x2+knxn)k1f(x1)+k2f(x2)+knf(xn)【知识模块】 高等数学17

12、【正确答案】 (1)当a=g(0)时,f(x)在 x=0 处连续(2)当 x0 时(3) 因=f(0),所以 f(x)在 x=0 处连续【知识模块】 高等数学18 【正确答案】 两边积分得 F2(x)= ,解得 F2(x)= ,由F(0)=1,F(x)0,得【知识模块】 高等数学19 【正确答案】 令 因为 f(x)在a, b上单调增加,所以 ab(x)dx0,而 ab(x)dx=abf(x)dx=abxf(x)dx- abf(x)dx,故 abxf(x)dx abf(x)dx【知识模块】 高等数学20 【正确答案】 根据对称性,所求面积为第一象限围成面积的 4 倍,先求第一象限的面积令 则

13、L1: 的极坐标形式为 L1:r 2=r12()=L2: 的极坐标形式为 L2:r 2=r22()=令 则第一象限围成的面积为所以A1= ,所求面积为【知识模块】 高等数学21 【正确答案】 z=f(u)两边对 x 及 y 求偏导,得方程 u=(u)+yxP(t)dt 两边对 x 及 y 求偏导,得【知识模块】 高等数学22 【正确答案】 令 ,则【知识模块】 高等数学23 【正确答案】 因为 f(x,y)在 D 上连续,所以 f(x,y)在 D 上取到最大值 M 和最小值 m,故 mf(x,y)M,又由 g(x,y)0 得 mg(x,y)f(x,y)g(x ,y)Mg(x ,y)积分得 (1

14、)当g(x, y)d=0 时, (x,y)g(x,y)d=0,则对任意的(,)D,有 f(x,y)g(x,y)d=(,) g(x,y)d(2)当 g(x,y)d0 时,由介值定理,存在(,) D,使得 即 f(x,y)g(x,y)d=f(,) g(x,y)da 【知识模块】 高等数学24 【正确答案】 (1)y+ay=f(x)的通解为 y=0xf(t)eatdt+Ce-ax,由 y(0)=0 得 C=0,所以 y=e-ax0xf(t)eatdt(2) 当 x0 时,y=e ax 0xf(t)eatdte -ax0xf(t)e atdtke-ax0xeatdt= e-ax(eax-1),因为 e-ax1,所以y (eax-1)【知识模块】 高等数学25 【正确答案】 的通解为 y=C1e-2t+C2e2t,故原方程的通解为 y=C1e-2arcsinx+C2e2arcsinx【知识模块】 高等数学

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1