ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:781KB ,
资源ID:851578      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-851578.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]考研数学一(一元函数积分学)模拟试卷15及答案与解析.doc)为本站会员(孙刚)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]考研数学一(一元函数积分学)模拟试卷15及答案与解析.doc

1、考研数学一(一元函数积分学)模拟试卷 15 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 ,则 F(x) ( )(A)为正常数(B)为负常数(C)恒为零(D)不为常数2 设 f(x)是以 l 为周期的周期函数,则 之值 ( )(A)仅与 a 有关(B)仅与 a 无关(C)与 a 及 k 都无关(D)与 a 及 k 都有关3 设 f(x)是以 T 为周期的可微函数,则下列函数中以 T 为周期的函数是 ( )4 下列反常积分收敛的是 ( )5 以下 4 个命题正确的个数为 ( )(A)1 个(B) 2 个(C) 3 个(D)4 个二、填空题6 设 f(x)是连续

2、函数,且 f(t)dt=x,则 f(7)=_7 设 =_8 设 ,则 a=_9 设 =_10 =_11 =_12 设 f(sinx2)=cos2x+tan2x(0x1),则 f(x)=_13 设 y=y(x),若 ,且 x+时,y0,则y=_三、解答题解答应写出文字说明、证明过程或演算步骤。14 设函数 f(x)在闭区间0,1上连续,在开区间(0 ,1) 内大于零,并且满足 xf(x)=f(x)+ (a 为常数),又曲线 y=f(x)与 x=1,y=0 所围的图形 S 的面积值为 2求函数 y=f(x),并问 a 为何值时,图形 S 绕 x 轴旋转一周所得的旋转体的体积最小15 设函数 y(x

3、)(x0)二阶可导且 y(x)0,y(0)=1过曲线 y=y(x)上任意一点P(x,y)作该曲线的切线及 z 轴的垂线,上述两直线与 x 轴所围成的三角形的面积记为 S1,区间 0,x上以 y=y(x)为曲边的曲边梯形面积记为 S2,并设 2S1-S2 恒为1,求此曲线 y=y(x)的方程16 设有一正椭圆柱体,其底面的长、短轴分别为 2a,2b,用过此柱体底面的短轴且与底面成 角的平面截此柱体,得一楔形体(如图 13-2),求此楔形体的体积 V17 计算曲线 y=ln(1-x2)上相应于 的一端弧的长度18 求心形线 r=a(1+cos)的全长,其中 a0 是常数19 求极限20 设 f(x

4、)在(-,+) 内连续,以 T 为周期,则21 计算不定积分22 计算不定积分23 求定积分的值24 设常数 0a 1,求25 已知26 设 a,b 均为常数, a -2,a0,求 a,b 为何值时,使27 直线 y=x 将椭圆 x2+3y2=6y 分为两块,设小块面积为 A,大块面积为 B,求 的值28 设 f(x)= ,求曲线 y=f(x)与直线 y= 所围成平面图形绕Ox 轴所旋转成旋转体的体积28 设29 证明:y=f(x)为奇函数,并求其曲线的水平渐近线;30 求曲线 y=f(x)与它所有水平渐近线及 Oy 轴围成图形的面积考研数学一(一元函数积分学)模拟试卷 15 答案与解析一、选

5、择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 A【试题解析】 因 esinxsinx 是以 2 为周期的周期函数,所以又 esinxcos2x0,故选(A)【知识模块】 一元函数积分学2 【正确答案】 C【试题解析】 因为 f(x)是以 l 为周期的周期函数,所以故此积分与 a 及 k 都无关【知识模块】 一元函数积分学3 【正确答案】 D【试题解析】 当 g(x+T)=g(x)时,因为因为 f(x)是以 T 为周期的函数,所以 4 个选项中的被积函数都是以 T 为周期的周期函数,但是仅是以 T 为周期的函数【知识模块】 一元函数积分学4 【正确答案】 C【试题解析

6、】 选项(A) 中,【知识模块】 一元函数积分学5 【正确答案】 A【试题解析】 设 f(x)=x,则 f(x)是 (-,+)上连续的奇函数,且 .但是故 f(x)dx发散,这表明命题,都不是真命题设 f(x)=x,g(x)=-x ,由上面讨论可知 g(x)dx 收敛,这表明命题是真命题故应选(A) 【知识模块】 一元函数积分学二、填空题6 【正确答案】 【试题解析】 要从变上限积分得到被积函数,可以对变限积分求导等式两边对x 求导得 f(x3-1).3x2=1,f(x 3-1)= 令 x=2,即得 f(7)=【知识模块】 一元函数积分学7 【正确答案】 【试题解析】 令 3x+1=t,x=【

7、知识模块】 一元函数积分学8 【正确答案】 2【试题解析】 【知识模块】 一元函数积分学9 【正确答案】 【试题解析】 【知识模块】 一元函数积分学10 【正确答案】 ln3【试题解析】 因【知识模块】 一元函数积分学11 【正确答案】 ,其中 C 为任意常数【试题解析】 【知识模块】 一元函数积分学12 【正确答案】 -ln(1-x)-x 2+C,其中 C 为任意常数【试题解析】 【知识模块】 一元函数积分学13 【正确答案】 e -x【试题解析】 由已知得,分离变量,两边积分,再由已知条件得结果 y=e-x【知识模块】 一元函数积分学三、解答题解答应写出文字说明、证明过程或演算步骤。14

8、【正确答案】 由题设,当 x0 时, 据此并由f(x)在点 x=0 处的连续性,得 又由已知条件旋转体的体积为 令 V(a)=,故当 a=-5 时,旋转体体积最小【知识模块】 一元函数积分学15 【正确答案】 曲线 y=y(x)上点 P(x,y)处的切线方程为 y-y=y(X-x)它与 x 轴的交点为 由于 y(x)0,y(0)=1,从而 y(x)0,于是两边对 x 求导并化简得 yy=(y)2令 p=y,则上述方程可化为注意到 y(0)=1,并由式得 y(0)=1由此可得 C1=1,C 2=0,故所求曲线的方程是 y=ex【知识模块】 一元函数积分学16 【正确答案】 方法一 底面椭圆的方程

9、为 以垂直于 y 轴的平行平面截此楔形体所得的截面为直角三角形,两直角边长分别为,楔形体的体积 方法二 底面椭圆方程为以垂直于 x 轴的平行平面截此楔形体所得的截面为矩形,其边长分别为 ,楔形体的体积【知识模块】 一元函数积分学17 【正确答案】 【知识模块】 一元函数积分学18 【正确答案】 r()=-asin,由对称性得【知识模块】 一元函数积分学19 【正确答案】 【知识模块】 一元函数积分学20 【正确答案】 (1)方法一【知识模块】 一元函数积分学21 【正确答案】 设,于是【知识模块】 一元函数积分学22 【正确答案】 【知识模块】 一元函数积分学23 【正确答案】 【知识模块】

10、一元函数积分学24 【正确答案】 对后者作积分变换【知识模块】 一元函数积分学25 【正确答案】 令 I(a)= 上式两边对 a 求导得 I(a)=令 y=2ax,则 dy=2adx,所以由于 I(0)=0,所以C=0,令 a=1,得到【知识模块】 一元函数积分学26 【正确答案】 若 b-a0,上述极限不存在,所以要使原等式成立,必须 a=b,那么所以,解得 a=b=8e2-2【知识模块】 一元函数积分学27 【正确答案】 直线与椭圆的交点为(0,0), ,则【知识模块】 一元函数积分学28 【正确答案】 先求 f(x)的表达式,注意到函数 ex 在 x+与 x 的极限,可知当 x0 时,y=y(x)与 y= 的交点横坐标为 x=1,且显然 0x1 时 所以所求旋转体体积其中,令 x=tant 得【知识模块】 一元函数积分学【知识模块】 一元函数积分学29 【正确答案】 显然,g(0)=1,而当 x0 时由“1 ”型极限得【知识模块】 一元函数积分学30 【正确答案】 由所考虑的平面图形的对称性及分部积分法得所求的面积为其中,由洛必达法则得【知识模块】 一元函数积分学

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1