ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:145KB ,
资源ID:851979      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-851979.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]考研数学一(线性代数)模拟试卷42(无答案).doc)为本站会员(arrownail386)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]考研数学一(线性代数)模拟试卷42(无答案).doc

1、考研数学一(线性代数)模拟试卷 42(无答案)一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 A 是 n 阶矩阵,下列结论正确的是( )(A)A,B 都不可逆的充分必要条件是 AB 不可逆(B) r(A) n,r(B) n 的充分必要条件是 r(AB) n(C) AX=0 与 BX=0 同解的充分必要条件是 r(A)=r(B)(D)AB 的充分必要条件是 EAE 一 B2 设 A 为 n 阶可逆矩阵, 为 A 的特征值,则 A*的一个特征值为 ( )(A)(B)(C) |A|(D)|A| n13 设三阶矩阵 A 的特征值为 2=一 1, 2=0, 3=1,则下列结论不正确

2、的是( ) (A)矩阵 A 不可逆(B)矩阵 A 的迹为零(C)特征值一 1,1 对应的特征向量正交(D)方程组 AX=0 的基础解系含有一个线性无关的解向量4 设 A 为三阶矩阵,方程组 AX=0 的基础解系为 1, 2,又 =一 2 为 A 的一个特征值,其对应的特征向量为 3,下列向量中是 A 的特征向量的是( )(A) 1+3(B) 33 一 1(C) 1+22+33(D)2 1325 设 A 为 n 阶实对称矩阵,下列结论不正确的是( )(A)矩阵 A 与单位矩阵 E 合同(B)矩阵 A 的特征值都是实数(C)存在可逆矩阵 P,使 PAP1 为对角阵(D)存在正交阵 Q,使 QTAQ

3、 为对角阵6 设 n 阶矩阵 A 与对角矩阵相似,则( )(A)A 的 n 个特征值都是单值(B) A 是可逆矩阵(C) A 存在 n 个线性无关的特征向量(D)A 一定为 n 阶实对称矩阵7 设 , 为四维非零列向量,且 ,令 A=T,则 A 的线性无关特征向量个数为( )(A)1(B) 2(C) 3(D)48 设 A,B 为正定矩阵,C 是可逆矩阵,下列矩阵不是正定矩阵的是( ) (A)C TAC(B) A1+B1(C) A*+B*(D)AB二、填空题9 设 A 是三阶矩阵,其三个特征值为一 ,1,则 |4A*+3E|=_10 设 = 的特征向量,则a=_,b=_11 已知 A= 有三个线

4、性无关的特征向量,则 a=_12 设 A 为三阶实对称矩阵,且 1= 为 A 的不同特征值对应的特征向量,则 a=_13 设 AB,其中 A= ,则x=_,y=_14 设 A 是三阶实对称矩阵,其特征值为 =3, 2=3=5,且 1=3 对应的线性无关的特征向量为 1= ,则 2=3=5 对应的线性无关的特征向量为_15 设 , 为三维非零列向量,(,)=3,A= T,则 A 的特征值为_三、解答题解答应写出文字说明、证明过程或演算步骤。16 设 A= 有三个线性无关的特征向量(1)求 a; (2) 求 A 的特征向量; (3)求可逆矩阵 P,使得 P1AP 为对角阵17 设 A= 为 A 的

5、特征向量(1)求 a,b 及 A 的所有特征值与特征向量(2)A 可否对角化 ?若可对角化,求可逆矩阵 P,使得 P1AP 为对角矩阵18 设 A= ,求 A 的特征值,并证明 A 不可以对角化19 设 A= ,已知 A 有三个线性无关的特征向量且 =2 为矩阵 A 的二重特征值,求可逆矩阵 A,使得 A1AP 为对角矩阵20 设 ATA=E,证明:A 的实特征值的绝对值为 121 设 为 A 的特征值 (1)证明:A T 与 A 特征值相等; (2)求 A2,A 2+2A+3E 的特征值; (3)若 |A|0,求 A1,A *,EA 1 的特征值22 设 X1,X 2 分别为 A 的属于不同

6、特征值 1, 2 的特征向量证明:X 1+X2 不是A 的特征向量23 = 0,求 A 的全部特征值,并证明 A 可以对角化24 设向量 =(a1,a 2,a n)T,其中 a10,A= T (1)求方程组 AX=0 的通解; (2)求 A 的非零特征值及其对应的线性无关的特征向量25 设 = ,A= T,求|6E An|26 设 A 为三阶矩阵,A 的特征值为 1=1, 2=2, 3=3,其对应的线性无关的特征向量分别为 1= ,求 An27 设 A 是 n 阶矩阵, 是 A 的特征值,其对应的特征向量为 X,证明: 2 是 A2 的特征值,X 为特征向量若 A2 有特征值 ,其对应的特征向

7、量为 X,X 是否一定为 A 的特征向量? 说明理由28 设 A,B 为 n 阶矩阵(1)是否有 ABBA; (2)若 A 有特征值 1,2,n,证明:ABBA 29 设 为 n 维非零列向量,A=E (1)证明:A 可逆并求 A1; (2)证明: 为矩阵 A 的特征向量30 设矩阵 A= 有一个特征值为 3 (1)求 y; (2)求可逆矩阵 P,使得(AP)T(AP)为对角矩阵31 设 A 是三阶实对称矩阵,r(A)=1,A 2 一 3A=O,设(1,1,一 1)T 为 A 的非零特征值对应的特征向量 (1)求 A 的特征值; (2) 求矩阵 A32 设三阶实对称矩阵 A 的特征值为 1=8, 2=3=2,矩阵 A 的属于特征值 1=8 的特征向量为 1= ,求属于 2=3=2的另一个特征向量33 设 n 阶矩阵 A 满足(aEA)(bEA)=O 且 ab证明:A 可对角化

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1