ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:664KB ,
资源ID:852321      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-852321.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]考研数学一(高等数学)模拟试卷43及答案与解析.doc)为本站会员(brainfellow396)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]考研数学一(高等数学)模拟试卷43及答案与解析.doc

1、考研数学一(高等数学)模拟试卷 43 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 f“(x)连续,f(0)=0, =1,则( )(A)f(0)是 f(x)的极大值(B) f(0)是 f(x)的极小值(C) (0,f(0)是 y=f(x)的拐点(D)f(0)非极值,(0,f(0)也非 y=f(x)的拐点2 设 f(x)在0,+)上连续,在(0,+)内可导,则( )3 设 f(x)连续,且 f(0)0,则存在 0,使得( )(A)f(x)在(0,)内单调增加(B) f(x)在(一 ,0)内单凋减少(C)对任意的 x(一 ,0),有 f(x)f(0)(D)对任意

2、的 x(0,),有 f(x)f(0)4 设函数 f(x)= 则在点 x=0 处 f(x)( )(A)不连续(B)连续但不可导(C)可导但导数不连续(D)导数连续5 设 f(x)= 则在 x=1 处 f(x)( )(A)不连续(B)连续但不可导(C)可导但不是连续可导(D)连续可导6 若 f(x)=f(x),且在(0,+) 内 f(x)0,f“(x)0,则在(一,0)内( )(A)f(x)0,f“(x)0(B) f(x)0,f“(x)0(C) f(x)0,f“(x)0(D)f(x)0,f“(x)07 设 f(x),g(x)(axb) 为大于零的可导函数,且 f(x)g(x)一 f(x)g(x)0

3、,则当axb 时,有 ( )(A)f(x)g(b) f(b)g(x)(B) f(x)g(a)f(a)g(x)(C) f(x)g(x)f(b)g(b)(D)f(x)g(x) f(a)g(a)二、填空题8 设函数 y=y(x)由 e2x+y 一 cos(xy)=e 一 1 确定,则曲线 y=y(z)在 x=0 对应点处的法线方程为_9 设 f(x)二阶连续可导,且=_10 设 f(u)可导,y=f(x 2)在 x0=一 1 处取得增量x=005 时,函数增量 y 的线性部分为 015,则 f(1)= _三、解答题解答应写出文字说明、证明过程或演算步骤。11 设 f(x)在a,b上连续,在(a,b)

4、 内可导(a0),且 f(a)=0证明:存在 (a,b),使得 f()= f()12 设函数 f(x)和 g(x)在区间 a,b上连续,在区间(a,b)内可导,且 f(a)=g(b)=0,g(x) 0,试证明存在 (a,b),使 =013 设 f(x)在a,b上连续,在(a,b) 内可导,且 f(a)=f(b)=0,证明:(1)存在 (a,b),使得 f()=2f()(2)存在 (a,b) ,使得 f()+f()=014 设 f(x),g(x) 在a,b 上连续,在(a ,b)内可导,且 g(x)0证明:存在 (a,b),使得 。15 设 f(x)在0,1上连续,证明:存在 (0,1),使得

5、0f(t)dt+( 一 1)f()=016 设 f(x)在1,2上连续,在 (1,2)内可导,证明:存在 (1,2) ,使得f()一 f()=f(2)一 2f(1)17 设 f(x)在0,1上连续,在 (0,1)内可导,且 f(0)=f(1),证明:存在 ,(0,1),使得 f()+f()=018 设 f(x)在a,b上连续,在(a,b) 内可导(a0)证明:存在 , (a,b),使得。19 设 f(x)在a,b上连续,在(a,b) 内二阶可导,连接点 A(a,f(a),B(b,f(b)的直线与曲线 y=f(x)交于点 C(c,f(c)(其中 acb)证明:存在 (a,b),使得f“()=02

6、0 设 f(x)在a,b上连续,在(a,b) 内三阶可导,f(a)=f(b),且 f(x)在a,b上不恒为常数证明:存在 ,(a ,b),使得 f()0, f()021 设 ba 0,证明: 22 设 f(x)在a,b上满足f“(x)2 ,且 f(x)在(a,b)内取到最小值证明:f(a) + f(b)2(b 一 a)23 设 f(x)在0,1上二阶连续可导且 f(0)=f(1),又f“(x)M,证明:f(x)24 证明:当 x1 时, 25 证明:当 x0 时,x 2(1+x)ln 2(1+x)26 证明:当 x0 时,arctanx+ 27 求 y=0x(1 一 t)arctantdt 的

7、极值考研数学一(高等数学)模拟试卷 43 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 B【试题解析】 由 =1 及 f“(x)的连续性,得 f“(0)=0,由极限的保号性,存在 0,当 0|x| 时, 0,从而 f“(x)0,于是 f(x)在(一 ,)内单调增加,再由 f(0)=0,得当 x(一 ,0)时,f(x) 0,当 x(0,) 时,f(x) 0,x=0为 f(x)的极小值点,选(B)【知识模块】 高等数学2 【正确答案】 D【试题解析】 【知识模块】 高等数学3 【正确答案】 D【试题解析】 当 x(一,0)时,f(x)f(0) ,应选(D

8、)【知识模块】 高等数学4 【正确答案】 D【试题解析】 【知识模块】 高等数学5 【正确答案】 D【试题解析】 【知识模块】 高等数学6 【正确答案】 C【试题解析】 因为 f(x)为奇函数,所以 f(x)为偶函数,故在(一,0)内有 f(x)0因为 f“(x)为奇函数,所以在(一 ,0)内 f“(x)0,选(C) 【知识模块】 高等数学7 【正确答案】 A【试题解析】 【知识模块】 高等数学二、填空题8 【正确答案】 【试题解析】 当 x=0 时,y=1,【知识模块】 高等数学9 【正确答案】 【试题解析】 【知识模块】 高等数学10 【正确答案】 【试题解析】 由 dy=2xf(x2)x

9、 得 dy|x=1=一 2f(1)005=一 01f(1),因为y的线性部分为 dy,由一 01f(1)=015 得 f(1)=一 【知识模块】 高等数学三、解答题解答应写出文字说明、证明过程或演算步骤。11 【正确答案】 令 (x)=(b 一 x)af(x),显然 (x)在a,b上连续,在(a,b)内可导,因为 (a)=(b)=0,所以由罗尔定理,存在 (a,b),使得 ()=0, 由 (x)=(b 一x)a1(b 一 x)f(x)一 af(x)得 (b 一 )a1(b 一 )f()一 af()且(b 一 )a10,故 f()=【知识模块】 高等数学12 【正确答案】 令 (x)=f(x)x

10、ag(t)dt+g(x)axf(t)dt, (x)在区间a,b上连续,在区间(a ,b)内可导,且 (x)=f(x)xbg(t)dt 一 f(x)g(x)+g(x)f(x)+g(x)axf(t)dt =f(x)xbg(t)dt+g(x)axf(t)dt,因为 (a)=(b)=0,所以由罗尔定理,存在 (a,b) 使 ()=0,即 f()bg(t)dt+g()af(t)dt=0,由于 g(b)=0 及 g(x)0,所以区间(a,b)内必有g(x)0,从而就有 xbg(t)dt0,于是有 =0【知识模块】 高等数学13 【正确答案】 (1)令 (x)= f(x),因为 f(a)=f(b)=0,所以

11、 (a)=(b)=0, 由罗尔定理,存在 (a,b) ,使得 ()=0, 而 (x)= 0,故f()=2f() (2)令 (x)=xf(x),因为 f(a)=f(b)=0,所以 (a)=(b)=0, 由罗尔定理,存在 (a,b),使得 ()=0, 而 (x)=xf(x)+f(x),故 f()+f()=0【知识模块】 高等数学14 【正确答案】 令 F(x)=f(x)g(b)+f(a)g(x)f(x)g(x),则 F(x)在a,b上连续,在(a, b)内可导,且 F(a)=F(b)=f(a)g(b),由罗尔定理,存在 (a,b),使得 F()=0,而 F(x)=f(x)g(b)+f(a)g(x)

12、一 f(x)g(x)一 f(x)g(x),所以【知识模块】 高等数学15 【正确答案】 令 (x)=x0xf(t)dt 一 0xf(t)dt 因为 (0)=(1)=0,所以由罗尔定理,存在 (0,1),使得 ()=0 而 (x)=0xf(t)dt+(x 一 1)f(x),故 0f(t)dt+( 一 1)f()=0【知识模块】 高等数学16 【正确答案】 令 (x)= ,则 (x)在1,2上连续,在(1,2)内可导,且 (1)=(2)=f(2)一 f(1),由罗尔定理,存在 (1,2) ,使得 ()=0,而(x)= ,故 f()一 f()=f(2)一 2f(1)【知识模块】 高等数学17 【正确

13、答案】 因为 f(0)=f(1),所以f()=一 f(),即 f()+f()=0【知识模块】 高等数学18 【正确答案】 令 F(x)=x2,F(x)=2x0(axb),由柯西中值定理,存在(a, b),使得,再由拉格朗日中值定理,存在 (a,b),使得。【知识模块】 高等数学19 【正确答案】 由微分中值定理,存在 1(a,c), 2(c,b),使得因为点 A,B ,C 共线,所以 f(1)=f(2), 又因为 f(x)二阶可导,所以再由罗尔定理,存在 (1, 2) (a,b),使得f“()=0【知识模块】 高等数学20 【正确答案】 因为 f(x)在a ,b上不恒为常数且 f(a)=f(b

14、),所以存在 c(a,b),使得 f(c)f(a)=f(b),不妨设 f(c)f(a)=f(b) , 由微分中值定理,存在 (a,c),(c, b),使得【知识模块】 高等数学21 【正确答案】 【知识模块】 高等数学22 【正确答案】 因为 f(x)在(a ,b)内取到最小值,所以存在 c(a,b),使得 f(c)为f(x)在a,b上的最小值,从而 f(c)=0 由微分中值定理得两式相加得|f(a)|+|f(b)|2(b 一 a)【知识模块】 高等数学23 【正确答案】 由泰勒公式得【知识模块】 高等数学24 【正确答案】 令 f(x)=(1+x)ln(1+x)一 xlnx,f(1)=2ln

15、20,因为 f(x)=ln(1+x)+1lnx 一 1=ln(1+ )0(x 1),所以 f(x)在1,+) 上单调增加。 再由 f(1)=2ln20 得当 x1 时,f(x)0,即 【知识模块】 高等数学25 【正确答案】 令 f(x)=x2 一(1+x)ln 2(1+x),f(0)=0; f(x)=2xln 2(1+x)一 2ln(1+x),f(0)=0;【知识模块】 高等数学26 【正确答案】 【知识模块】 高等数学27 【正确答案】 令 y=(1x)arctanx=0,得 x=0 或 x=1,y“=一 arctanx+0,所以 x=0 为极小值点,极小值为y=0;x=1 为极大值点,极大值为 y(1)=01(1 一 t)arctantdt=01arctantdt01tarctantdt【知识模块】 高等数学

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1