ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:341KB ,
资源ID:852450      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-852450.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]考研数学三(一元函数积分学)模拟试卷23及答案与解析.doc)为本站会员(刘芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]考研数学三(一元函数积分学)模拟试卷23及答案与解析.doc

1、考研数学三(一元函数积分学)模拟试卷 23 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设f(x)dx=x 2+C,则xf(1 一 x2)dr 等于( )(A) (1 一 x2)2+C(B) (1 一 x2)2+C(C) 2(1 一 x2)2+C(D)一 2(1 一 x2)2+C2 双纽线(x 2+y2)2=x2 一 y2 所围成的区域面积可表示为( )二、填空题3 =_4 设 f(x)是以 T 为周期的连续函数,且 F(x)=0xf(t)dt+bx 也是以 T 为周期的连续函数,则 b=_5 设 f(x)C1,+),广义积分 1+f(x)dx 收敛,且满足

2、f(x)=则 f(x)=_6 1+ =_三、解答题解答应写出文字说明、证明过程或演算步骤。7 求8 求9 求10 求11 求12 求x 2arctancdx13 设 (x)=abln(x2+t)dt,求 (x),其中 a0,b 013 设 f(x)连续,且 F(x)=0x(x 一 2t)f(t)dt证明:14 若 f(x)是偶函数,则 F(x)为偶函数;15 若 f(x)单调不增,则 F(x)单调不减16 求 0n|cosx|dx17 18 设 f(x)=sin3x+一 xf(x)dx,求 0xf(x)dx19 求20 求21 计算21 设 f(a)=f(b)=0, abf2(x)dx=1,f

3、(x)Ca ,b22 求 abxf(x)f( x)dx;23 证明: abf2(x) dx x2f2(x)dx24 求曲线 y= 与 x 轴围成的区域绕 x 轴、y 轴形成的几何体体积25 设 f(x)=一 1x(1 一|t|)dt(x一 1),求曲线 y=f(x)与 x 轴所围成的平面区域的面积26 求由曲线 y=4 一 x2 与 x 轴围成的部分绕直线 x=3 旋转一周所成的几何体的体积考研数学三(一元函数积分学)模拟试卷 23 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 B【试题解析】 xf(1 一 x2)dx= f(1 一 x2)d(1 一

4、 x2)= (1 一 x2)2+C,选(B)【知识模块】 一元函数积分学2 【正确答案】 A【试题解析】 双纽线(x 2+y2)2=x2 一 y2 的极坐标形式为 r2=cos2,再根据对称性,有 选(A)【知识模块】 一元函数积分学二、填空题3 【正确答案】 【试题解析】 【知识模块】 一元函数积分学4 【正确答案】 【试题解析】 【知识模块】 一元函数积分学5 【正确答案】 【试题解析】 【知识模块】 一元函数积分学6 【正确答案】 【试题解析】 【知识模块】 一元函数积分学三、解答题解答应写出文字说明、证明过程或演算步骤。7 【正确答案】 因为ln(tanx)= 所以【知识模块】 一元函

5、数积分学8 【正确答案】 【知识模块】 一元函数积分学9 【正确答案】 【知识模块】 一元函数积分学10 【正确答案】 【知识模块】 一元函数积分学11 【正确答案】 令 =t,则=t2arctan(1+t)一 t+ln(t 2+2t+2)+C【知识模块】 一元函数积分学12 【正确答案】 【知识模块】 一元函数积分学13 【正确答案】 (x)= abln(x2+t)d(x2+t)= (x)=2xln(x2+b)一2xln(x2+a)=【知识模块】 一元函数积分学【知识模块】 一元函数积分学14 【正确答案】 设 f(一 x)=f(x),因为 F(一 x)=(一 x 一 2t)f(t)dt 0

6、 一 x(一 x+2u)f(一 u)(一 du)=0x(x 一 2u)f(u)du=F(x),所以 F(x)为偶函数【知识模块】 一元函数积分学15 【正确答案】 F(x)= 0x(x 一 2t)f(t)dt=x0xf(t)dt 一 20xtf(t)dt, F(x)= 0xf(t)dt 一 xf(x)一 xf()一 f(x),其中 介于 0 与 x 之间, 当 x0 时,x0,因为 f(x)单调不增,所以 F(x)0, 当 x0 时,0x,因为 f(x)单调不增,所以 F(x)0, 从而 F(x)单调不减【知识模块】 一元函数积分学16 【正确答案】 0n|cosx|dx=n0|cosx|dx

7、= =2n【知识模块】 一元函数积分学17 【正确答案】 【知识模块】 一元函数积分学18 【正确答案】 令 一 xf(x)dx=A,则 f(x)=sin3x+A,xf(x)=xsin 3x+Ax 两边积分得一 xf(x)dx=一 xsin3xdx+一 Axdx,即 A=一 xsin3xdx=20xsin3xdx=0sin3xdx从而 f(x)=sin3x+ 故 0f(x)dx=0(sin3x+ )dx=0sin3xdx+ 0dx= (1+2)【知识模块】 一元函数积分学19 【正确答案】 【知识模块】 一元函数积分学20 【正确答案】 因为 为奇函数,所以sin2xcos2xdx= sin2

8、x(1 一 sin2x)dx=2(I2 一 I4)【知识模块】 一元函数积分学21 【正确答案】 x=1 为被积函数的无穷间断点,则【知识模块】 一元函数积分学【知识模块】 一元函数积分学22 【正确答案】 abxf(x)f(x)dx=【知识模块】 一元函数积分学23 【正确答案】 abxf(x)f(x)dx= abf2(x)dxabx2f2(x)dx【知识模块】 一元函数积分学24 【正确答案】 V x=取x,x+dx ,则 dVy=2xcosxdx,故 Vy【知识模块】 一元函数积分学25 【正确答案】 当一 1x0 时,f(x)= 一 1x(1 一|t|)dt= 一 1x(t+1)dt当 x0 时,f(x)= 一 10(t+1)dt+一 1x(1 一 t)dt=故所求的面积为【知识模块】 一元函数积分学26 【正确答案】 取x,x+dx 一 2,2,则 dV=2(3 一 x)(4 一 x2)dx,V= 一22dV=2一 22(3 一 x)(4 一 x2)dx=6一 22(4 一 x2)dx=1202(4 一 x2)dx=12 =64【知识模块】 一元函数积分学

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1