ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.04MB ,
资源ID:852748      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-852748.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]考研数学三(微积分)模拟试卷39及答案与解析.doc)为本站会员(livefirmly316)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]考研数学三(微积分)模拟试卷39及答案与解析.doc

1、考研数学三(微积分)模拟试卷 39 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 f(x),g(x) 是连续函数,当 x0 时,f(x)与 g(x)是等价无穷小,令 F(x)=0xf(xt)dt,G(x)= 01xg(xt)dt,则当 x0 时,F(x)是 G(x)的( )(A)高阶无穷小(B)低阶无穷小(C)同阶但非等价无穷小(D)等价无穷小2 设 F(x)=xx+2esintsintdt,则 F(x)( )(A)为正常数(B)为负常数(C)为零(D)取值与 x 有关3 设 = ,则当 x0 时,两个无穷小的关系是( )(A)高阶无穷小(B)低阶无穷小(C

2、)同阶非等价无穷小(D)等价无穷小二、填空题4 设 f(sin2x)= =_5 设 f(lnx)= ,则f(x)dx=_6 设xy(x)dx=arcSinz+C,则 =_7 设 f(x)为连续函数,且满足 01f(xt)dt=f(x)+xsinx,则 f(x)=_8 求 =_9 求 =_10 求 =_11 求 =_12 =_13 =_14 =_15 =_16 maxx+2,x 2dx=_17 =_三、解答题解答应写出文字说明、证明过程或演算步骤。18 设 f(x)连续,且 f(x)=20xf(x 一 t)dt+ex,求 f(x)19 求20 求21 求22 设 F(x)为 f(x)的原函数,且

3、当 x0 时,f(x)F(x)= ,又 F(0)=1,F(x)0,求 f(x)23 设 ,求 f(x)24 求25 设 f(x)连续, 0xtf(x-t)dt=1 一 cosx,求 f(x)dx26 设 S(x)=0xcostdt (1)证明:当 nx(n+1) 时,2nS(x) 2(n+1) ; (2)求27 设 f(x)在0,+)上连续,非负,且以 T 为周期,证明:28 设 f(x)在0,1上连续, f(0)=0, 01f(x)dx=0证明:存在 (0,1),使得 0(x)dx=f()29 设 f(x)在( 一 a,a)(a0)内连续,且 f(0)=2 (1)证明:对 0xa ,存在0

4、1,使得 0xf(t)dt+0-xf(t)dt=xf(x)一 f(-x); (2)求 30 设31 设 f(x)有界,且 f(x)连续,对任意的 x(一 , +)有f(x)+f(x)1证明:f(x)132 设 f(x)在( 一,+oo)上有定义,且对任意的 x, y(一,+)有f(x)一f(y)x y证明: abf(x)dx 一(b 一 a)f(a) (b 一 a)233 设 f(x)在0,1上连续,且 0mf(x)M对任意的 x-01证明:34 设 f(x)在a,b上连续且单调增加,证明: abxf(x)dx35 设 f(x)在(0,+)内连续且单调减少证明: 1n+1f(x)dx f(1)

5、+1nf(x)dx36 设 f(x)在a,b上连续且单调减少证明:当 0k1 时, 0kf(x)dxk01f(x)dx考研数学三(微积分)模拟试卷 39 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 D【试题解析】 F(x)= 0xf(x 一 t)dt=一 0xf(xt)d(x 一 t)=0xf(u)du, G(x)= 01xg(xt)dt=0xg(u)du,则 ,选 D【知识模块】 微积分2 【正确答案】 A【试题解析】 由周期函数的平移性质,F(x)= xx+2esintsintdt=-esintsintdt,再由对称区间积分性质得 F(x)=0

6、(esintsinte-sintsint)dt=0(esint 一 e-sint)sintdt, 又(e sint 一 e-sint)sint 连续、非负、不恒为零,所以 F(x)0,选 A【知识模块】 微积分3 【正确答案】 C【试题解析】 因为 ,所以两无穷小同阶但非等价,选 C【知识模块】 微积分二、填空题4 【正确答案】 【试题解析】 【知识模块】 微积分5 【正确答案】 【试题解析】 【知识模块】 微积分6 【正确答案】 【试题解析】 【知识模块】 微积分7 【正确答案】 cosxxsinx+C【试题解析】 由 01f(xt)dt=f(x)+xsinx,得 01f(xt)d(xt)=

7、xf(x)+x2sinx,即 0xf(t)dt=xf(x)+x2sinx,两边求导得 f(x)=一 2sinxxcosx,积分得 f(x)=cosxxsinx+C【知识模块】 微积分8 【正确答案】 【试题解析】 【知识模块】 微积分9 【正确答案】 【试题解析】 【知识模块】 微积分10 【正确答案】 【试题解析】 【知识模块】 微积分11 【正确答案】 【试题解析】 【知识模块】 微积分12 【正确答案】 【试题解析】 【知识模块】 微积分13 【正确答案】 【试题解析】 【知识模块】 微积分14 【正确答案】 【试题解析】 【知识模块】 微积分15 【正确答案】 【试题解析】 【知识模块

8、】 微积分16 【正确答案】 【试题解析】 【知识模块】 微积分17 【正确答案】 【试题解析】 【知识模块】 微积分三、解答题解答应写出文字说明、证明过程或演算步骤。18 【正确答案】 0xf(xt)dt x0f(u)(一 du)=0xf(u)du, f(x)=2 0xf(u)du+ex 两边求导数得 f(x)一 2f(x)=ex, 则 f(x)=(exe -2dxdx+C)e-2dx=Cex 一 ex, 因为 f(0)=1,所以 C=2,故 f(x)=2e2x 一 ex【知识模块】 微积分19 【正确答案】 【知识模块】 微积分20 【正确答案】 因为(x 2ex)=(x2+2x)ex,所

9、以【知识模块】 微积分21 【正确答案】 【知识模块】 微积分22 【正确答案】 【知识模块】 微积分23 【正确答案】 令 lnx=t,则 f(t)= ,当 t0 时,f(t)=t+C 1;当 t0 时,f(t)=et+C2显然 f(t)为连续函数,所以 f(t)也连续,于是有 C1=1+C2,故 f(x)=【知识模块】 微积分24 【正确答案】 【知识模块】 微积分25 【正确答案】 由 0xtf(xt)dt x0(x 一 u)f(u)(一 du)=0x(xu)f(u)du=x0xf(u)du0xuf(u)du,得 x0xf(u)du0xuf(u)du=1 一 cosx, 两边求导得 0x

10、f(u)du=sinx,令x= f(x)dx=1【知识模块】 微积分26 【正确答案】 (1)当 nx(n+1) 时, 0ncostdt 0xcost dt 0(n+1)costdt, 0ncostdt=n 0costdt= =2n, 0(n+1)costdt=2(n+1) ,则 2nS(x)2(n+1) (2)【知识模块】 微积分27 【正确答案】 对充分大的 x,存在自然数 n,使得 nTx(n+1)T ,因为 f(x)0,所以 0nTf(t)dt0xf(t)df0(n+1)Tf(t)dt,【知识模块】 微积分28 【正确答案】 令 (x)= ,因为 f(x)在0,1 上连续,所以 (x)

11、在0,1上连续,在(0,1) 内可导,又 (0)=0,(1)= 01f(x)dx=0,由罗尔定理,存在 (0,1),使得 ()=0,而 (x)= ,所以 0f(x)dx=f()【知识模块】 微积分29 【正确答案】 (1)令 F(x)=0xf(t)dt+0-xf(t)dt,显然 F(x)在0,x上可导,且 F(0)=0,由微分中值定理,存在 01,使得 F(x)=F(x)一 F(0)=F(x)x,即 0xf(t)dt+0-xf(t)dt=xf(x)一 f(-x)(2)【知识模块】 微积分30 【正确答案】 【知识模块】 微积分31 【正确答案】 令 (x)=exf(x),则 (x)=exf(x

12、)+f(x), 由f(x)+f(x)1得(x)e x,又由 f(x)有界得 (一)=0,则 (x)=(x)一 (一)= (x)dx ,两边取绝对值得 e xf(x) -x(x)dx -xexdx=ex,所以f(x)1【知识模块】 微积分32 【正确答案】 因为(b 一 a)f(a)=abf(a)dx, 所以 abf(x)dx 一(b 一 a)f(a)= abf(x)一 f(a)dx abf(x) 一 f(a)dx ab(x 一 a)dx=【知识模块】 微积分33 【正确答案】 因为 0mf(x)M,所以 f(x)一 m0,f(x)一 M0,从而【知识模块】 微积分34 【正确答案】 【知识模块

13、】 微积分35 【正确答案】 1n+1f(x)dx=12f(x)dx+23f(x)dx+ nn+1f(x)dx, 当 x1,2时,f(x)f(1),两边积分得 12f(x)dxf(1), 同理 23f(x)dxf(2), nn+1f(x)dxf(n),相加得12f(x)dx ; 当 x1,2时,f(2)f(x),两边积分得 f(2)12f(x)dx, 同理f(3)23f(x)dx,f(n) n-1nf(x)dx, 相加得 f(2)+f(n) 1nf(x)dx,于是f(1)+1nf(x)dx。【知识模块】 微积分36 【正确答案】 0kf(x)dx 一 k01f(x)dx=0kf(x)dx-k0kf(x)+k1f(x)dx =(1 一 k)0kf(x)dxkk1f(x)dx=k(1 一 k)f(1)一 f(2) 其中 10,k, 2k,1因为 0k1 且f(x)单调减少, 所以 0kf(x)dx 一 k01f(x)dx=k(1 一 k)f(1)一 f(2)0,故 0kf(x)dxk01f(x)dx【知识模块】 微积分

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1