ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:392.50KB ,
资源ID:853252      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-853252.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]考研数学二(一元函数微分学)模拟试卷51及答案与解析.doc)为本站会员(amazingpat195)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]考研数学二(一元函数微分学)模拟试卷51及答案与解析.doc

1、考研数学二(一元函数微分学)模拟试卷 51 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 f()连续,且 2,则( )(A)f()在 0 处不可导(B) f()在 0 处可导且 f(0)0(C) f()在 0 处取极小值(D)f()在 0 处取极大值2 设 f()具有二阶连续导数,且 2,则( )(A)1 为 f()的极大值点(B) 1 为 f()的极小值点(C) (1,f(1)为 yf() 的拐点(D)1 不是 f()的极值点,(1,f(1)也不是 yf()的拐点3 设 f()二阶连续可导, f(0)0,且 1,则( )(A)0 为 f()的极大值点(B)

2、 0 为 f()的极小值点(C) (0,f(0)为 yf() 的拐点(D)0 不是 f()的极值点,(0,f(0)也不是 yf()的拐点4 设 yy()由 0 确定,则 f(0)等于 ( )(A)2e 2(B) 2e-2(C) e21(D)e -215 设函数 f()二阶可导,且 f()0,f () 0,yf() f(),其中0,则( )(A)ydy0(B) ydy0(C) dyy0(D)dyy06 设 f ()连续, f(0)0, 1,则( )(A)f(0)是 f()的极大值(B) f(0)是 f()的极小值(C) (0,f(0)是 yf() 的拐点(D)f(0)非极值,(0,f(0)也非

3、yf()的拐点7 设函数 f()在0 ,a 上连续,在(0,a) 内二阶可导,f(0) 0,f() 0,则 在(0,a上( ) (A)单调增加(B)单调减少(C)恒等于零(D)非单调函数二、填空题8 _9 设周期为 4 的函数 f()处处可导,且 ,则曲线 yf()在(3, f(3) 处的切线为_ 10 设 f()为偶函数,且 f(1)2,则 _11 设 f()在 a 处可导,则 _12 设 f(a)存在且不等于零,则 _13 设 f()为奇函数,且 f(1)2,则 f(3) 1 _三、解答题解答应写出文字说明、证明过程或演算步骤。14 设 f() ,求 f(n)()15 设 f() 01ys

4、in dy(01) ,求 f()16 设 f()连续,且对任意的 ,y(,)有 f(y)f()(y)2y ,f(0)1,求 f()17 设 f() 讨论函数 f()在 0 处的可导性18 设 f()二阶连续可导,且 f(0)f(0) 0,f(0)0 ,设 u()为曲线 yf()在点(, f()处的切线在 z 轴上的截距,求 19 设 f()在 a 处二阶可导,证明 f(a)20 设 f()连续, f(0)0,f(0) 1,求 -aaf(a)d -aaf(a)d21 设 ,求 22 设 f()连续,且 g() 02(t)dt,求 g()23 证明:连续函数取绝对值后函数仍保持连续性,举例说明可导

5、函数取绝对值不一定保持可导性24 举例说明函数可导不一定连续可导25 设 f()在a,b上有定义,M0 且对任意的 ,y a,b,有f()f(y)M y k (1)证明:当 k0 时,f()在a,b上连续; (2)证明:当k1 时,f()常数26 设 f() 处处可导,确定常数 a,b,并求 f()27 设对一切的 ,有 f(1)2f(),且当 0,1时 f()( 21),讨论函数 f()在 0 处的可导性28 设 f() 求 f()并讨论其连续性29 设 0cos(t) 2dt 确定 y 为 的函数,求 30 设 f()二阶可导, f(0)0,令 g() (1)求 g(); (2)讨论 g(

6、)在 0 处的连续性31 设 f() 求 f()考研数学二(一元函数微分学)模拟试卷 51 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 D【试题解析】 2 得 f(0)1, 由极限的保号性,存在 0,当0 时, 0,即 f()1f(0), 故 0 为 f()的极大值点,应选 D【知识模块】 一元函数微分学2 【正确答案】 C【试题解析】 由 2 及 f()二阶连续可导得 f(1)0; 因为20,所以由极限保号性,存在 0,当 01 时,0, 从而 故(1,f(1)是曲线 yf() 的拐点,应选 C【知识模块】 一元函数微分学3 【正确答案】 A【试

7、题解析】 因为 10, 所以由极限的保号性,存在 0,当 0 时, 0, 注意到 3o(),所以当 0 时,f()0, 从而 f()在(,) 内单调递减,再由 f(0)0 得故 0 为 f()的极大值点,应选 A【知识模块】 一元函数微分学4 【正确答案】 A【试题解析】 当 0 时,由 1y dt0 得 y1, dt0 两边对 求导得 1 0, 解得 ,且 e1, 由 得 y(0) 2e 2 应选 A【知识模块】 一元函数微分学5 【正确答案】 D【试题解析】 根据微分中值定理,yf( )f()f()0(),dyf()0,因为 f ()0,所以 f()单调增加,而 ,所以 f()f(),于是

8、 f()f(),即 dyy0,选 D【知识模块】 一元函数微分学6 【正确答案】 B【试题解析】 1 及 f()的连续性,得 f(0)0,由极限的保号性,存在 0,当 0 时, 0,从而 f()0,于是 f()在(,)内单调增加,再由 f(0)0,得当 (,0)时,f()0,当 (0,)时,f()0,0 为 f()的极小值点,选 B【知识模块】 一元函数微分学7 【正确答案】 B【试题解析】 令 h()f() f(),h(0)0,h()f() 0(0 a), 由 得 h()0(0 a), 于是 0(0a),故 在(0,a上为单调减函数,选 B【知识模块】 一元函数微分学二、填空题8 【正确答案

9、】 【试题解析】 由 得【知识模块】 一元函数微分学9 【正确答案】 y24【试题解析】 由 得 f(1)2, 再由得 f(1)2, 又 f(3)f( 4 1)f(1)2,f( 3)f(41)f(1)2, 故曲线yf()在点( 3,f(3) 处的切线为 y22(3),即 y24【知识模块】 一元函数微分学10 【正确答案】 8【试题解析】 因为 f()为偶函数,所以 f()为奇函数,于是 f(1)2,【知识模块】 一元函数微分学11 【正确答案】 10f(a)f(a)【试题解析】 因为 f()在 a 处可导,所以 f()在 a 处连续,于是【知识模块】 一元函数微分学12 【正确答案】 【试题

10、解析】 【知识模块】 一元函数微分学13 【正确答案】 6【试题解析】 因为 f()为奇函数,所以 f()为偶函数, 由 f(3)3 2f(3)得f(3) 1 3f(1)3f(1) 6【知识模块】 一元函数微分学三、解答题解答应写出文字说明、证明过程或演算步骤。14 【正确答案】 令 f()由 A(21)B(2)4 3 得 , 解得 A1,B2, 即 f()故 f(n)()【知识模块】 一元函数微分学15 【正确答案】 则 f()【知识模块】 一元函数微分学16 【正确答案】 当 y 0 时,f(0) 2f(0),于是 f(0)0 对任意的(,),则f() 2C,因为 f(0)0,所以 C0,

11、故 f() 2【知识模块】 一元函数微分学17 【正确答案】 因为 0f(). 得 f()0f(0),故f()在 0 处连续 由 1 得 f (0)1, 再由 0 得 f+(0)0, 因为 f (0)f+(0),所以 f()在 0 处不可导【知识模块】 一元函数微分学18 【正确答案】 曲线 yf()在点(,f()的切线为 Yf()f()(X) , 令Y0,则 u()X ,则【知识模块】 一元函数微分学19 【正确答案】 【知识模块】 一元函数微分学20 【正确答案】 a af(a)d a af(a)d a af(a)d( A) a af(a)d( a) 02af()d 2a 0f()d 02

12、a()d 0-2af()d, 又由 ln(1a)a o(a 2)得 a0 时 aln(1a) ,于是【知识模块】 一元函数微分学21 【正确答案】 方程 两边对 求导数得【知识模块】 一元函数微分学22 【正确答案】 g() 20f(t)d(t) 20f(u)du 20f(u)du, g()2 0f(u)du 2f()【知识模块】 一元函数微分学23 【正确答案】 设 f()在a,b上连续,令 g()f(), 对任意的 0a,b,有 0g()g( 0)f()f( 0)f()f( 0), 因为 f()在a ,b上连续,所以 f()f( 0), 由迫敛定理得 f()f( 0), 即f()在 0 处

13、连续,由 0 的任意性得f() 在a ,b上连续 设 f(),则 f()在0 处可导,但 f()在 0 处不可导【知识模块】 一元函数微分学24 【正确答案】 令 f() 当 0 时,f(),当 0 时,f(0) 0, 即因为 f()不存在,而 f(0)0,所以 f()在 0处可导,但 f()在 0 处不连续【知识模块】 一元函数微分学25 【正确答案】 (1)对任意的 0a,b,由已知条件得 0f()f( 0)M 0 k, f()f( 0), 再由 0 的任意性得 f()在a,b上连续 (2)对任意的0a,b ,因为 k1, 所以 0 M 0 k-1 由夹逼定理得f(0)0,因为 0 是任意

14、一点,所以 f()0,故 f()常数【知识模块】 一元函数微分学26 【正确答案】 由 f()在 0 处连续,得 b0由 f()在 0 处可导,得 a2, 所以 f() 则 f()【知识模块】 一元函数微分学27 【正确答案】 当 1,0时,f() f(1) (1)( 22) ,因为 f (0)f+(0),所以 f()在 0 处不可导【知识模块】 一元函数微分学28 【正确答案】 当 0 时,f() ,当 0 时,f()cos,由 f (0)1,f +(0) 1 得 f(0)1,则容易验证 1f(0),所以f()连续【知识模块】 一元函数微分学29 【正确答案】 0cos(t) 2dt 0co

15、su2(du) 0cost2dt, 等式 0cost2dt 两边对 求导,得 cos 2, 于是【知识模块】 一元函数微分学30 【正确答案】 (1)因为 f(0)g(0), 所以 g()在 0 处连续 当 0 时,g() ; 当 0时,由 得g(0) f(0) ,即 (2)由题意得:所以 g()在 0 处连续【知识模块】 一元函数微分学31 【正确答案】 当 1 时,f() ; 当 1 时,f()1;当 1 时,f()1; 又 2,0,则 f()在 1 处不连续,故也不可导 由f(10)f(1 0)f(1)得 f()在 1 处连续 因为所以 f()在 1 处也不可导, 故 f()【知识模块】 一元函数微分学

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1