ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:775.50KB ,
资源ID:938901      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-938901.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年高考数学总复习典型例题突破(压轴题系列)专题02导数与零点个数.doc)为本站会员(sumcourage256)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019年高考数学总复习典型例题突破(压轴题系列)专题02导数与零点个数.doc

1、1专题 02 导数与零点个数导数与零点个数,对于考生来讲中等偏难,基本的思路是利用导数分析函数的单调性,确定函数的极值或最值,作出函数的大致图像,再数形结合可求得结果。【题型示 例】1、设 为实数,函数(1)求 的极值点;(2)如果曲线 与 轴仅有一个交点,求实数 的取值范围【答案】(1) 的极大值点为 ,极小值点为 (2) 或 2、已知函数 .(1)求 的极值;(2)若函数 的图象与函数 的图象在区间 上有公共点,求实数 的取值范围.【答案】(1)极大值 ,无极小值;(2) .【解析】(1) 的 定义域为 , ,令 得 ,2当 时, , 是增函数;当 时, , 是减函数,所以 在 处取得极大

2、值,无极小值.(2)当 时,即 时,由 (1)知 在 上是增函数,在 上是减函数, 所以 ,因为 的图象与 的图象在 上有公共点, 所以 ,解得 ,又 ,所以 . 当 时,即 时, 在 上是增函数,所以 在 上最大值为 ,所以原问题等价于 ,解得 .又 ,所以此时 无解 . 综上,实数 的取值范围是 .3、设函数 (其中 )()求函数 的极值;()求函数 在 上的最小值;()若 ,判断函数 零点个数【答案】(1)极小值 ,不存在极大值;(2)(3)1 个【解析】() ,3由 得 ,由 得 ,在 单调递增,在 单调递减极小值 ,不存在极大值() 由()知, 在 单调递增,在 单调递减 当 时,

3、在 单调递减, 单调递增, 当 时, 在 单调递增,;() 由题意求导得 ,由 得 或 ,由 得所以 在 上单调递增,在 上单调递减当 时, ,故函数 只有一个零点4、已知函数 .(I)若 ,求 的极值;(II)若 ,函数 有且只有一个零点,求实数 的取值范围.【答案】(I) 的极小值为 ;(II) 或 .【解析】(I) 时, ,其中则 得当 时 , 单调递减,当 时 , 单调递增,因而 的极小值为 ;4(II)若 有且只有一个零点,即方程 在 上有且只有一个实数根,分离参数得 ,设 ,则 ,又设 , ,而因而当 时 ,当 时 ,那么当 时 , 单调递增,当 时 , 单调递减, ,又 时 ,且

4、 时从而 或 ,即 或 时函数 有且只有一个零点.【题型专练】1、已知函数 .(1)当 时,求 的极值;(2)若函数 有两个零点,求实数 的取值范围.【答案】(1) 有得极大值 ,无 极小值;(2) .2、设函数 , .关于 的方程 在区间 上有解,求 的取值范围;5【答案】 的取值范围 .【解析】方程 即为 ,令 ,则 ,当 时, , 随 变化情况如表:, , ,当 时, , 的取值范围 .3、已知函数 .(1)求函数 的单调区间;(2)若当 时(其中 ),不等式 恒成立,求实数 的取值范围;(3)若关于 的方程 在区间 上恰好有两个相异的实根,求实数 的取值范围.【答案】(1) 的单调减区

5、间为 ,增区间 ;(2) ;(3) .【解析】 ,所以(1) ,令 , 得: ,所以 的单调减区间为 ,增区间 ;6(2)由(1)知 , 得 ,函数 在 上是连续的,又所以,当 时, 的最大值为故 时,若使 恒成立,则(3)原问题可转化为:方程 在区间 上恰有两个相异实根.令 ,则 ,令 ,解得: .当 时, 在区间 上单调递减,当 时, 在区间 上单调递增.在 和 处连续,又且 当 时, 的最大值是 , 的最小值是在区间 上方程 恰好有两个相异的实根时,实 数 的取值范围是:4、设函数 ,其中 为实数.(1)若 在 上是单调减函数, 且 在 上有最小值, 求 的取值范围;(2)若 在 上是单

6、调增函数, 试求 的零点个数, 并证明你的结论.【答案】() ;()当 或 时, 有 个零点,当 时, 有 个零点,证明见解析7(2) 在 上恒成立, 则 ,故 .若 , 令 得增区间为 ;令 得减区间为 ,当 时, ;当 时, ;当 时, ,当且仅当 时取等号. 故: 时, 有 个 零点;当 时, 有 个零点.5、已知函数 在 处的切线斜率为 2.(1)求 的单调区间和极值;(2)若 在 上无解,求 的取值范围.【答案】(1)函数 的单调递增区间为 ,单调递减区间为 和 .函数的极小值为 ,极大值为 .(2)8【解析】(1) , , ,令 ,解得 或 当 变化时, 的变化情况如下表:函数 的单调递增区间为 ,单调递减区间为 和 .函数的极小值为 ,极大值为 .(2)令 , 在 上无解, 在 上恒成立, ,记 , 在 上恒成立, 在 上单调递减, ,若 ,则 , ,9 单调递减, 恒成 立,若 ,则 ,存在 ,使得 ,当 时, ,即 , 在 上单调递增, , 在 上成立,与已知矛盾,故舍去, 综上可知, .

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1