ImageVerifierCode 换一换
格式:PPTX , 页数:26 ,大小:744.56KB ,
资源ID:940339      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-940339.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版高考数学一轮复习大题专项突破高考大题专项突破2高考中的三角函数与解三角形课件文北师大版.pptx)为本站会员(eventdump275)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2020版高考数学一轮复习大题专项突破高考大题专项突破2高考中的三角函数与解三角形课件文北师大版.pptx

1、高考大题专项二 高考中的三角函数与解三角形,-2-,从近五年的高考试题来看,高考对三角函数与解三角形的考查都呈现出较强的规律性,每年的题量和分值要么三个小题共15分,要么一个小题和一个大题共17分.在三个小题中,分别考查三角函数的图像与性质、三角变换、解三角形;在一个小题和一个大题中,小题要么考查三角函数的图像与性质,要么考查三角变换,大题考查的都是解三角形.,-3-,题型一,题型二,题型三,题型四,题型一 三角函数与三角变换的综合,-4-,题型一,题型二,题型三,题型四,-5-,题型一,题型二,题型三,题型四,-6-,题型一,题型二,题型三,题型四,解题心得1.解三角函数与三角变换相结合的题

2、,先是把异名、异次、异角化异为同,最终化为一个函数一个变角的三角函数式; 2.确定函数y=Asin(x+)(A0,0)的单调区间和对称性时,基本思想是把x+看作一个整体.,-7-,题型一,题型二,题型三,题型四,-8-,题型一,题型二,题型三,题型四,-9-,题型一,题型二,题型三,题型四,-10-,题型一,题型二,题型三,题型四,题型二 利用正、余弦定理解三角形 例2(2018全国1,理17)在平面四边形ABCD中,ADC=90, A=45,AB=2,BD=5. (1)求cosADB; (2)若DC= ,求BC.,-11-,题型一,题型二,题型三,题型四,-12-,题型一,题型二,题型三,题

3、型四,解题心得在三角形中,已知两角一边能应用正弦定理求其余的边;已知两边及其夹角求夹角的对边或已知两边及一边的对角求另一边都能直接利用余弦定理求解.,-13-,题型一,题型二,题型三,题型四,-14-,题型一,题型二,题型三,题型四,题型三 利用正、余弦定理解四边形,-15-,题型一,题型二,题型三,题型四,-16-,题型一,题型二,题型三,题型四,解题心得对于在四边形中解三角形的问题或把一个三角形分为两个三角形来解三角形的问题,分别在两个三角形中列出方程,组成方程组,通过加减消元或者代入消元,求出所需要的量;对于含有三角形中的多个量的已知等式,化简求不出结果,需要依据题意应用正弦、余弦定理再

4、列出一个等式,由此组成方程组通过消元法求解.,-17-,题型一,题型二,题型三,题型四,-18-,题型一,题型二,题型三,题型四,-19-,题型一,题型二,题型三,题型四,题型四 正、余弦定理与三角变换的综合 例4(2018天津,文16)在ABC中,内角A,B,C所对的边分别为a,b,c.已知 (1)求角B的大小; (2)设a=2,c=3,求b和sin(2A-B)的值.,-20-,题型一,题型二,题型三,题型四,-21-,题型一,题型二,题型三,题型四,-22-,题型一,题型二,题型三,题型四,对点训练4已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B-cos2C-

5、sin2A=-sin Asin B,sin(A-B)=cos(A+B). (1)求角A,B,C; (2)若 ,求ABC的边长b的值及ABC的面积.,-23-,题型一,题型二,题型三,题型四,-24-,题型一,题型二,题型三,题型四,-25-,1.在历年的高考试题中,三角中的解答题一般考查简单三角函数式的恒等变形、解三角形,有时也考查正弦定理、余弦定理的实际应用.特别是涉及解三角形的问题,经常出现的题型有:正弦定理、余弦定理与三角变换的综合;正弦定理、余弦定理与三角形面积的综合;正弦定理、余弦定理与三角变换及三角形面积的综合.把握住高考命题规律,有针对性的训练是提高成绩的有效措施.,-26-,2.三角恒等变换和解三角形的结合,一般有两种类型:一是先利用三角函数的平方关系、和角公式等求符合正弦定理、余弦定理中的边与角,再利用正弦定理、余弦定理求值;二是先利用正弦定理、余弦定理确定三角形的边与角,再代入到三角恒等变换中求值.具体解题步骤如下: 第一步利用正(余)弦定理进行边角转化; 第二步利用三角恒等变换求边与角; 第三步代入数据求值; 第四步查看关键点、易错点. 3.解三角形的问题的关键是如何借助转化和消元,同时注重正弦定理、余弦定理多种表达形式及公式的灵活应用.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1