ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:785KB ,
资源ID:940422      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-940422.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版高考数学一轮复习第八章立体几何课时规范练38直线、平面垂直的判定与性质文北师大版.doc)为本站会员(confusegate185)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2020版高考数学一轮复习第八章立体几何课时规范练38直线、平面垂直的判定与性质文北师大版.doc

1、1课时规范练 38 直线、平面平行的判定与性质基础巩固组1.(2018 江西景德镇盟校二联,5)关于直线 l 与平面 ,下列说法正确的是( )A.若直线 l 平行于平面 ,则 l 平行于 内的任意一条直线B.若直线 l 与平面 相交,则 l 不平行于 内的任意一条直线C.若直线 l 不垂直于平面 ,则 l 不垂直于 内的任意一条直线D.若直线 l 不垂直于平面 ,则过 l 的平面不垂直于 2.(2018 黑龙江哈尔滨师范大学附属中学三模,3)已知互不相同的直线 l,m,n 和平面 , , ,则下列命题正确的是( )A.若 l 与 m 为异面直线, l ,m ,则 B.若 ,l ,m ,则 l

2、mC.若 =l , =m , =n ,l ,则 m nD.若 , ,则 3.(2018 辽宁沈阳质检一,6)如图, E 是正方体 ABCD-A1B1C1D1的棱 C1D1上的一点(不与端点重合),BD1平面 B1CE,则( )A.BD1 CE B.AC1 BD1C.D1E=2EC1 D.D1E=EC14.(2018 福建漳州质检,9)在正方形 ABCD 中, AB=4,点 E、 F 分别是 AB、 AD 的中点,将 AEF 沿 EF 折起到 AEF 的位置,使得 AC=2 ,在平面 ABC 内,过点 B 作 BG平面 AEF 交边 AC 上于点 G,则3AG=( )A. B. C. D.33

3、233 3 4335.如图所示的四个正方体图形中, A,B 为正方体的两个顶点, M,N,P 分别为其所在棱的中点,能得出AB面 MNP 的图形的序号是 .(写出所有符合要求的图形序号) 6.2(2018 黑龙江仿真模拟五,18)在三棱柱 ABC-A1B1C1中,已知侧棱与底面垂直, CAB=90,且AC=1,AB=2,E 为 BB1的中点, M 为 AC 上一点, AM=AC.(1)若三棱锥 A1-C1ME 的体积为 ,求 AA1的长;26(2)证明: CB1平面 A1EM.综合提升组7.(2018 陕西榆林二模,4)如图,在三棱台 ABC-A1B1C1的 6 个顶点中任取 3 个点作平面

4、,设 平面ABC=l,若 l A1C1,则这 3 个点可以是( )A.B,C,A1 B.B1,C1,AC.A1,B1,C D.A1,B,C18.(2018 四川“联测促改”,11)正方体 ABCD-A1B1C1D1棱长为 3,点 E 在边 BC 上,且满足 BE=2EC,动点 M 在正方体表面上运动,并且总保持 ME BD1,则动点 M 的轨迹的周长为( )A.6 B.4 C.4 D.32 3 2 39.(2018 河北衡水调研二模,18)如图,四棱锥 P-ABCD 的底面 ABCD 是边长为 2 的正方形,平面 PAB平面 ABCD,E 是 PD 的中点,棱 PA 与平面 BCE 交于点 F

5、.(1)求证: AD EF;(2)若 PAB 是正三角形,求三棱锥 P-BEF 的体积 .310.(2018 江西景德镇二联,17)如图,正三棱柱 ABC-A1B1C1中, AB=2,AA1=3,F 为棱 AC 上靠近 A 的三等分点,点 E 在棱 BB1上且 BF平面 A1CE.(1)求 BE 的长;(2)求正三棱柱 ABC-A1B1C1被平面 A1CE 分成的左右两个几何体的体积之比 .创新应用组11.(2018 青海西宁二模,19)如图所示,四边形 ABCD 为菱形, AF=2,AF DE,DE平面 ABCD,(1)求证: AC平面 BDE;(2)当 DE 为何值时,直线 AC平面 BE

6、F?请说明理由 .12.(2018 山西大同二模,18)如图,梯形 ABCD 中, BAD= ADC=90,CD=2,AD=AB=1,四边形 BDEF 为正方形,且平面 BDEF平面 ABCD.(1)求证: DF CE;(2)若 AC 与 BD 相交于点 O,那么在棱 AE 上是否存在点 G,使得平面 OBG平面 EFC?并说明理由 .4课时规范练 38 直线、平面平行的判定与性质1.B 对于 A,若直线 l 平行于平面 ,则 l 与 内的任意一条直线平行或异面,A 错;对于 B,若直线 l 与平面 相交,则 l 不平行于 内的任意一条直线,B 正确;对于 C,若直线 l 不垂直于平面 ,则l

7、 可垂直于 内的无数条直线,C 错;对于 D,若直线 l 不垂直于平面 ,则过 l 的平面可垂直于 ,D 错,故选 B.2.C 若 l 与 m 为异面直线, l ,m ,则 与 平行或相交,A 错,排除 A;若 ,l ,m ,则 l 与 m 平行或异面,B 错,排除 B;若 , ,则 或 ,D错,排除 D,故选 C.3.D 设 B1C BC1=O,如图, BD1平面 B1CE,平面 BC1D1平面 B1CE=OE,BD 1 OE,O 为 BC1的中点,E 为 C1D1的中点, D 正确,由异面直线的定义知 BD1,CE 是异面直线,故 A 错;在矩形 ABC1D1中,AC1与 BD1不垂直,故

8、 B 错;C 显然错,故选 D.4.B 连接 AC 分别交 BD,EF 于 O,H,E ,F 分别是 AB,AD 中点,则 EF BD, ,=13BD 面 AEF,又 BG 面 AEF, 面 BGD面 AEF,面 ACH 分别与两面交于 OG,HA,OG HA, ,AG= AC= ,故选 B.=13 13 2335. 在 中,由于平面 MNP 与 AB 所在的侧面平行,所以 AB平面 MNP;在 中,由于 AB 与以 MP为中位线的三角形的底边平行,所以 AB MP,又因为 MP平面 MNP,AB平面 MNP.所以 AB平面MNP. 中,只须平移 AB,即可发现 AB 与平面 MNP 相交 .

9、故填 .6.(1)解 设 AA1=h, A1C1h= ,1-1=-11,11=12 2三棱锥 E-A1C1M 的高为 2, 2= ,-11=132 26解得 h= ,即 AA1= .22 22(2)证明 如图,连接 AB1交 A1E 于 F,连接 MF.E 为 BB1的中点,AF= AB1,23又 AM= AC,235MF CB1,而 MF平面 A1EM,CB1平面 A1EM,CB 1平面 A1EM.7.D 当 为平面 A1BC1时,因为平面 ABC平面 A1B1C1,平面 A1BC1平面 ABC=l,平面 A1BC1平面A1B1C1=A1C1,所以 l A1C1,故选 D.8.A 如图,在正

10、方体 ABCD-A1B1C1D1中,连 AC,CB1,B1A,则有 BD1平面 AB1C.在 BB1、 BA 上分别取 F,G 使得 BF=2FB1,BG=2GA,连 EF,FG,GE,则有 EF CB1,EG AC,可得平面 EFG平面 AB1C,故得 BD1平面 EFG,所以 EFG 即为点 M 的运动轨迹 .由题意得 EF=FG=GE= 3 =2 ,23 2 2动点 M 的轨迹的周长为 EF+FG+GE=6 .选 A.29.(1)证明 因为底面 ABCD 是边长为 2 的正方形,所以 BC AD.又因为 BC平面 PAD,AD平面 PAD,所以 BC平面 PAD.又因为 B,C,E,F

11、四点共面,且平面 BCEF平面 PAD=EF,所以 BC EF.又因为 BC AD,所以 AD EF.(2)解 因为 AD EF,E 是 PD 的中点,所以 F 为 PA 的中点, EF= AD=1.12又因为平面 PAB平面 ABCD,平面 PAB平面 ABCD=AB,AD AB,所以 AD平面 PAB,所以 EF平面 PAB.又因为 PAB 是正三角形,所以 PA=PB=AB=2,所以 S PBF= S PBA= .12 32又 EF=1,所以 VP-BEF=VE-PBF= 1= .1332 36故三棱锥 P-BEF 的体积为 .3610.解 (1)如图,作 FG CC1与 A1C 交于点

12、 G,BE CC1,BE FG,面 BEGF面 A1CE=EG,BF 面 A1CE,BF EG.于是在平行四边形 BEGF 中, BE=FG= AA1=2.236(2) (1+3)2 ,1-11=1312 3=433223=3 ,-111=34 3左边几何体的体积为: =3 ,-1111-113433=533 左右两个几何体的体积之比为 =5 4.53343311.(1)证明 因为 DE平面 ABCD,AC平面 ABCD,所以 AC DE,菱形 ABCD 中, AC BD,DE BD=D,DE面 BDE,BD面 BDE.所以 AC平面 BDE.(2)解 当 DE=4 时,直线 AC平面 BEF

13、,理由如下:设菱形 ABCD 中, AC 交 BD 于 O,取 BE 的中点 M,连接 OM,则 OM 为 BDE 的中位线,所以 OM DE,且 OM= DE=2,12又 AF DE,AF= DE=2,12所以 OM AF,且 OM=AF.所以四边形 AOMF 为平行四边形 .则 AC MF.因为 AC平面 BEF,FM平面 BEF,所以直线 AC平面 BEF.12.(1)证明 连接 EB.因为在梯形 ABCD 中, BAD= ADC=90,AB=AD=1,DC=2,BD= ,BC= ,2 2BD 2+BC2=CD2,BC BD,又因为平面 BDEF平面 ABCD,平面 BDEF平面 ABC

14、D=BD,BC平面 ABCD,BC 平面 BDEF,BC DF,又因为正方形 BDEF 中, DF EB 且 EB,BC平面 BCE,EB BC=B,DF 平面 BCE,又 CE 平面 BCE,DF CE.(2)解 在棱 AE 上存在点 G,使得平面 OBG平面 EFC,且 ,证明如下:=12因为梯形 ABCD 中, BAD= ADC=90,AB=1,DC=2,AB DC, ,=127又 ,OG CE,=12又因为正方形 BDEF 中, EF OB,且 OB,OG平面 EFC,EF,CE平面 EFC,OB 平面 EFC,OG平面 EFC,又 OB OG=O,且 OB,OG平面 OBG,所以平面 OBG平面 EFC.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1