ImageVerifierCode 换一换
格式:PPT , 页数:54 ,大小:1.13MB ,
资源ID:946360      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-946360.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((通用版)中考数学二轮复习专题6最值问题课件.ppt)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

(通用版)中考数学二轮复习专题6最值问题课件.ppt

1、专题6 最值问题,【解析】A,B的位置与直线MN有什么关系?根据这种关系最小值是一个什么模型?如何作图?,解:如图,P点即为所求的点(找B点关于直径MN的对称点也可,或用尺规过直线外一点作已知直线的垂线,找A点或B点的对称点即可),【解析】C,D的位置与直线OA有什么关系? 作点D还是点C关于x轴的对称点方便求解?,4在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A,B两点距离之差的绝对值最大时,求点P的坐标【解析】由三角形两边之差小于第三边可知,当A,B,P三点不共线时,|PAPB|AB,又因为A(0,1),B(1,2)两点都在x轴同侧,则当A,B,P

2、三点共线时,|PAPB|AB,即|PAPB|AB,所以本题中当点P到A,B两点距离之差的绝对值最大时,点P在直线AB上先运用待定系数法求出直线AB的解析式,再令y0,求出x的值即可,5(原创题)如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA1,OB3,OC4. (1)求经过A,B,C三点的抛物线的解析式; (2)当点P的坐标为(5,3)时,若点M为该抛物线上一动点,请求出当|PMAM|的最大值时点M的坐标,并直接写出|PMAM|的最大值,6如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm,底面周长为10 cm,在容器内壁离容器底部3 cm的点B处有一饭粒,

3、此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm与饭粒相对的点A处,求蚂蚁吃到饭粒需爬行的最短路径 【解析】将容器侧面展开,建立A关于EF的对称点A,根据两点之间线段最短可知AB的长度即为所求,7图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图 (1)蜘蛛在顶点A处 苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线; 苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线AGC和往墙面BBCC爬行的最近路线AHC,试通过计算判断哪条路线更近;,(2)在图3中,半径为10 dm的M与DC相切,圆心M到边CC的距离为15 dm.蜘蛛P

4、在线段AB上,苍蝇Q在M的圆周上,线段PQ为蜘蛛爬行路线若PQ与M相切,试求PQ长度的取值范围,解:,8在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别是(4,6),(1,4) (1)请在图中的网格平面内建立平面直角坐标系; (2)请画出ABC关于x轴对称的A1B1C1; (3)请在y轴上求作一点P,使PB1C的周长最小,并写出点P的坐标,【解析】第(3)题中PB1C的周长写成三条线段和时,其中哪一条线段是不变的?转化为两条线段和的最值问题,如何利用对称轴作出点P?,解:(1)如图所示 (2)如图,即为所求,【解析】四边形ABC

5、D周长写成四条线段和时,AB是不变的,如何将AD,DC,CB转化到同一直线上,找到最短点?,10. 如图,在RtABC中,ACB90,将ABC绕顶点C逆时针旋转得到ABC,M是BC的中点,P是AB的中点,连结PM,若BC2,BAC30,求线段PM的最大值 【解析】在点P的运动过程中,什么时候线段取得最大值?,(2)GHE和BHD面积之和的最大值为6,理由:对于EGH,点H在以EG为直径的圆上,当点H与点A重合时,EGH的高最大;对于BDH,点H在以BD为直径的圆上,当点H与点A重合时,BDH的高最大,则GHE和BHD面积之和的最大值为246,12如图,平面直角坐标系中,将含30的三角尺的直角顶

6、点C落在第二象限其斜边两端点A,B分别落在x轴、y轴上,且AB12 cm. (1)若OB6 cm,点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离; (2)求点C与点O的距离的最大值【解析】过C作CEx轴,CDy轴,垂足分别为E,D,证明ACE与BCD相似,再利用相似三角形的性质,求出点C与点O的距离的函数解析式,【解析】利用勾股定理列式求出AB,并表示出AP,AQ,再利用OAB的正弦求出点Q到AP的距离,得出三角形的面积关于t的二次函数,再利用函数的性质求出最值,14工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计)

7、(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12 dm2时,裁掉的正方形边长多大? (2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少元?,解:(1)如图所示:设裁掉的正方形的边长为x dm, 由题意可得(102x)(62x)12,即x28x120, 解得x2或x6(舍去), 答:裁掉的正方形的边长为2 dm,底面积为12 dm2,(2)长不大于宽的五倍,102x5(62x),解得0x2.5,设总费用为w元,由题意可知w0.52x(164x)2(102x)(62x)4x248x1204(x6)224,对称轴为直线x6,开口向上,当0x2.5时,w随x的增大而减小,当x2.5时,w有最小值,最小值为25元, 答:当裁掉边长为2.5 dm的正方形时,总费用最低,最低为25元,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1