ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:503.50KB ,
资源ID:948051      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-948051.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年高考数学高频考点名师揭秘与仿真测试专题08函数二次函数及其性质理.doc)为本站会员(hopesteam270)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019年高考数学高频考点名师揭秘与仿真测试专题08函数二次函数及其性质理.doc

1、108 函数 二次函数及其性质【考点讲解】1、具本目标: 1.掌握二次函数的图象与性质,2.会求二次函数的最值(值域)、单调区间.二、知识概述:二次函数1.一元二次方程的相关知识:根的判别式: ;判别式与根的关系:_;求根公式:_;韦达定理:_.; ; ; 2.二次函数的相关知识: 定义域:_; 值域:_;对称轴方程:_; 顶点坐标:_;与 y轴的交点坐标:_.二次函数的顶点式:_.二次函数的零点式:_;与 x轴的交点坐标:_;定义域: R; 值域: ; 对称轴方程: abx2; 顶点坐标: ;与 y轴的交点坐标: ),0(c.二次函数的顶点 式: .二次函数的零点式: ;与 x轴的交点坐标:

2、 ;3.二次函数 的单调性:当 0a时,单调增区间是_;单调减区 间是_.2当 0a时,单调增区间是_;单调减区间是_.时 ),2(b; )2,(ab 0时 )2,(ab; ),(4.二次函数 在某一闭区间上的最值:首先确定二次函数的顶点:_若顶点的横 坐标在给定的区间上,则:0a时,在顶点处取得最_值,为_,在离对称轴较远的端点取得最_值.时,在顶点处取得最_值,为_,在离对称轴较远的端点取得最_值.若顶点的横坐标不在给定的区间上,则: 0a时,最_值在离对称轴较近的端点处取得,最_值在离对称轴较远的端点处取得.时,最_值在离对称轴较近的端点处取得,最_值在离对称轴较远的端点处取得.;小,

3、abc42,大;大, abc42,小 小 大 大 小5.考点探析:从近几年的高考试题来看,二次函数图像的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用高考对幂函数,只需掌握简单幂函数的图象与性质.6.温馨提示:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论; (2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解7.根据已知条件确定二次函数解析式,一般用待定

4、系数法,选择规律如下:(1)已知三个点的坐标,可选用一般式;(2)已知顶点坐标、对称轴、最大或最小值,可选用顶点式;(3)已知抛物线与 x 轴的两交点坐标,可选用两点式.【常见题型】1.二次函数的解析式:(1)已知二次函数的图象经过三点 01A( , ) , 2B( , ) , 1C( , ) 那么这个二次函数的解析式为_3【答案】(2)已知:抛物线与 x 轴交于(-2,0) , (4,0)两点,且过点为(1,- 29) ,则函数解析式为_【解析】设二次函数解析式为 ,因为二次函数图象交 x 轴于(-2,0) , (4,0)两点,且过点(1,- 29) ,设 , , 12a 所求函数解析式为:

5、 , 【答案】(3)已知二次函数 ()fx的图象经过点 4,3,它在 x轴上截得的线段长为 2,并且对任意 xR,都有,求 f(x)的解析式【解析】由题意 对 R恒 成立可知,二次函数的对称轴是直线 2.并且函数 f的图象被 x 轴截得的线段的长为 2,所以可知方程 0xf的两个根为 1,3.根据题意可设函数 的解析式为 ,题中给出函数的图象过点(4,3) ,将点坐标代入解析式中可以 求得 1a,所以函数的解析式为 .2.二次函数的图象和性质(1)(2010 安徽)设 0abc,二次函数 的图象可能是 ( )4c表示的是函数图象与 y 轴的交点位置,当 0c时,图象与 y 轴交于正半轴,当 0

6、c时,图象与 y 轴交于负半轴.结合题意可知符合题意的图象是 D,此时 cba.【答 案】D(2)函数 的图象关于直线 1x对称,则 .【解析】由题意可知二次函数的对称轴为直线 , 解得 4a,又因为bax,是关于 1x对称,所以有 12ba,解得 6.【答案】 (3)设二次函数 在区间 0,1上单调递减,且 ,则实数 m的取值范围是 . ( )【解析】 法一:二次函数 在区间 ,上单调递减,则 0a,所以 0a,即函数图象的开口向上,对称轴是直线 1x 所以,则当 时,有 2m 【答案】B2. 【2018 年浙江卷】已知 R,函数 ,当 =2 时,不等式 f(x)0 的解集是_若函数 f(x

7、)恰有 2 个零点,则 的取值范围是_【解析】本题考点是两类函数的零点的应用.5由题意可得 042x或 ,所以有 42x或 1,不等式的 0xf的解集为 1, . 【 答案】 3,【模拟考场】1.函数 的单调递增区间是 ( )A 41,( B ),41 C 41,( D ,41【解析】原函数转化为 ,所以函数的单调递增区间为 ),41.【答案】B2.函数 且 ,则下列说法中正确的是 ( )A. ()fx在区间 (,1上是减函数 B. ()fx在区间 1(,2上是减函数C. 在区间 上是增函数 D. 在区间 上是增函数【答案】B63.函数 在区间 (,6)上是减函数,则实数 a的取值范围是( )

8、 A. 3a B. 3a C. 3 D. 3【解 析】由题意可知二次函数 的开口向上,对称轴是直线 ax2,原函数在的单调递减区间为 ,所以有 ,即 6, .【答案】D4.函数 ,下列说法正确的是 ( )A.函数有最大值 11,有最小值 2 B.函数有最大值 11,有最小值 3C.函数无最大值,有最小值 3 D.函数无最大值,有最小值 2【解析】由题意可知 ,在 上无最大值,有最小值是2. 【答案】D.5若函数 满足 ,则函数的单调减区间是( )A.(,0 B.0,) C.(1 D.1,)【答案】B6如果函数 对任意实数 t 都又有 ,那么( )A. B. C. D. 【解析】因为函数 对任意实数 t 都又有 ,所以可知函数的对称轴是直线 ,所以可得 4b,原函数为 .所以有 . 【答案】A77对于二次函数 ()fx=ax2 bx+c, 若函数 (1)fx是偶函数,则 ba的值为( )A. 0 B.1 C.2 D.-2【解析】:令 (1)yf的一次项系数为 0,可得 2ba【答案】:C8.已知函数 , ()gxm,若对于任一实数 x, ()f与 gx至少有一个为正数,则实数 m的取值范围是( )A. 0,2 B. 0,8 C. (2,8) D. (,0)【解析】 ,此时 0fx恒成立,排除 A.D,易验证 2m满足,故选 B可数形结合详细解释【答案】B

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1