ImageVerifierCode 换一换
格式:PPT , 页数:25 ,大小:869.50KB ,
资源ID:953935      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-953935.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018_2019学年度高中数学第二章点直线平面之间的位置关系2.2.4平面与平面平行的性质课件新人教A版必修220190222429.ppt)为本站会员(fuellot230)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2018_2019学年度高中数学第二章点直线平面之间的位置关系2.2.4平面与平面平行的性质课件新人教A版必修220190222429.ppt

1、2.2.4 平面与平面平行的性质,课标要求:1.理解平面与平面平行的性质定理及含义.2.能运用面面平行的性质定理,证明一些空间平行关系的简单命题.,自主学习 新知建构自我整合,导入 (从模型导入) 如图,过长方体ABCD-A1B1C1D1的棱上三点E,F,G的平面与上底面A1B1C1D1和下底面ABCD的交线有什么关系?,【情境导学】 (教学备用),答案:平行,平面与平面平行的性质定理,知识探究,平行,ab,探究:如果两个平面平行,那么其中一个平面内的直线和另一个平面有什么样的位置关系? 答案:平行.,自我检测,1.(定理理解)若a,b,则a与b位置关系是( ) (A)平行 (B)异面 (C)

2、相交 (D)平行或异面或相交 2.(理解定理)已知,a,B,则在内过点B的所有直线中( ) (A)不一定存在与a平行的直线 (B)只有两条与a平行的直线 (C)存在无数条与a平行的直线 (D)存在唯一一条与a平行的直线,D,D,3.(定理应用)过平面外一点作一平面的平行线有 条.,答案:无数,4.(定理应用)(2016邢台一中高一测试)如图所示,P是三角形ABC所在平面外一点,平面平面ABC,分别交线段PA,PB,PC于A,B,C.若PAAA=25,则ABC与ABC的面积比为 .,答案:449,题型一,平面与平面平行的性质定理的应用,【思考】 1.若两个平面互相平行,则其中一个平面内的直线与另

3、一个平面什么关系?与另一个平面内的直线又有何关系?,课堂探究 典例剖析举一反三,提示:若两平面平行,其中一个平面内的直线与另一个平面平行;与另一个平面内的直线平行或异面.,2.平行于同一个平面的两个平面什么关系?,提示:平行.,【例1】 (12分)如图,在三棱锥P-ABC中,D,E,F分别是PA,PB,PC的中点,M是AB上一点,连接MC,N是PM与DE的交点,连接NF.求证:NFCM.,规范解答:因为D,E,F分别为PA,PB,PC的中点,所以DEAB,又DE平面ABC,AB平面ABC,所以DE平面ABC,4分 同理EF平面ABC,又DEEF=E,所以平面DEF平面ABC,8分 又平面PMC

4、平面ABC=MC,平面PMC平面DEF=NF,由面面平行的性质定理得,NFMC.12分,变式探究:将本例中的三棱锥改为长方体,如图是长方体被一平面所截得到的几何体,四边形EFGH为截面,则四边形EFGH的形状为 .,解析:因为平面ABFE平面CDHG,平面EFGH与两平面分别交于EF,GH.由面面平行的性质定理得EFGH,同理可得EHFG,所以四边形EFGH为平行四边形. 答案:平行四边形,方法技巧,面面平行的性质定理是由面面平行得到线线平行.证明线线平行的关键是把要证明的直线看作是平面的交线,所以构造三个平面:即两个平行平面,一个经过两直线的平面,有时需要添加辅助面.,即时训练1-1:如图,

5、平面四边形ABCD的四个顶点A,B,C,D均在平行四边形ABCD所确定的一个平面外,且AA,BB,CC,DD互相平行. 求证:四边形ABCD是平行四边形.,题型二,平行关系的综合应用,【例2】 (12分)如图,在棱长为a的正方体ABCD-A1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.,(1)求证:PQ平面DCC1D1;,规范解答:(1)法一 如图,连接AC,CD1. 因为P,Q分别是AD1,AC的中点, 所以PQCD1.1分 又PQ平面DCC1D1,2分 CD1平面DCC1D1,3分 所以PQ平面DCC1D1.4分 法二 取AD的中点G,连接PG,GQ, 则有PG

6、DD1,GQDC,且PGGQ=G,1分 所以平面PGQ平面DCC1D1.2分 又PQ平面PGQ, 所以PQ平面DCC1D1.4分,(2)求PQ的长; (3)求证:EF平面BB1D1D.,直线与平面平行,平面与平面平行的判定定理、性质定理,揭示了线线平行、线面平行、面面平行之间的转化关系,具体转化过程如图所示.,方法技巧,即时训练2-1:如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ与平面PAO平行?,解:如图,设平面D1BQ平面ADD1A1=D1M,点M在AA1上,平面D1BQ平面BCC1B1=BQ

7、,平面ADD1A1平面BCC1B1,由面面平行的性质定理可得BQD1M. 假设平面D1BQ平面PAO,由平面D1BQ平面ADD1A1=D1M,平面PAO平面ADD1A1=AP,可得APD1M,所以BQD1MAP.因为P为DD1的中点, 所以M为AA1的中点,Q为CC1的中点, 故当Q为CC1的中点时,平面D1BQ平面PAO.,【备用例1】 如图所示,平面平面,ABC,A1B1C1分别在平面,内,线段AA1,BB1,CC1相交于点O,点O在,之间,若AB=2,AC=1,OAOA1= 32,且BAAC,则A1B1C1的面积为 .,求证:在四棱锥P-ABCD中,AP平面EFG.,证明:在四棱锥P-ABCD中, 因为E,F分别为PC,PD的中点, 所以EFCD. 因为ABCD,所以EFAB. 因为EF平面PAB,AB平面PAB, 所以EF平面PAB. 同理EG平面PAB.又EFEG=E, 所以平面EFG平面PAB. 因为AP平面PAB,所以AP平面EFG.,谢谢观赏!,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1