2019春九年级数学下册第24章圆24.5三角形的内切圆课件(新版)沪科版.pptx

上传人:花仙子 文档编号:1086691 上传时间:2019-04-08 格式:PPTX 页数:14 大小:451.48KB
下载 相关 举报
2019春九年级数学下册第24章圆24.5三角形的内切圆课件(新版)沪科版.pptx_第1页
第1页 / 共14页
2019春九年级数学下册第24章圆24.5三角形的内切圆课件(新版)沪科版.pptx_第2页
第2页 / 共14页
2019春九年级数学下册第24章圆24.5三角形的内切圆课件(新版)沪科版.pptx_第3页
第3页 / 共14页
2019春九年级数学下册第24章圆24.5三角形的内切圆课件(新版)沪科版.pptx_第4页
第4页 / 共14页
2019春九年级数学下册第24章圆24.5三角形的内切圆课件(新版)沪科版.pptx_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、24.5 三角形的内切圆,知识点1,知识点2,三角形的内切圆及相关概念 1.下列说法错误的是( B ) A.三角形的内切圆与三角形的三边都相切 B.一个圆一定有唯一一个外切三角形 C.一个三角形一定有唯一一个内切圆 D.等边三角形的内切圆与外接圆是同心圆 2.如图,O与三角形各边都相切,O是三角形的 内切圆 ,圆心O叫做三角形的 内心 , ABC叫做O的 外切三角形 .,知识点1,知识点2,3.为美化校园,学校准备在如图所示的三角形空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.( 保留作图痕迹,不写作法 ),解:如图所示,O即为所求.,知识点1,知识点2,三角形的内心 4.三角形

2、的内心是( B ) A.三条垂直平分线的交点 B.三条内角平分线的交点 C.三条中线的交点 D.三条高的交点 5.在ABC中,已知C=90,BC=3,AC=4,则它的内切圆半径是( B ),6.等边三角形的内切圆半径为1,则等边三角形的周长为 .,知识点1,知识点2,【变式拓展1】等腰三角形的腰长为10,底边长为12,那么它的内切圆半径为 3 . 【变式拓展2】已知一个三角形的三边长分别为5,7,8,则其内切圆的半径为( C ),7.九章算术是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾( 短直角边 )长为8步,股(

3、长直角边 )长为15步,问该直角三角形能容纳的圆形( 内切圆 )直径是多少?”( C )A.3步 B.5步 C.6步 D.8步 8.如图,I为ABC的内心,D点在BC上,且IDBC,若B=44,C=56,则AID=( A )A.174 B.176 C.178 D.180,9.( 河北中考 )如图,I为ABC的内心,AB=4,AC=3,BC=2,将ACB平移使其顶点与点I重合,则图中阴影部分的周长为( B )A.4.5 B.4 C.3 D.2,10.已知O是RtABC的内切圆,ACB=90,AB=13,AC=12,则ABC的面积与O的面积之差等于 30-4 . 11.已知三角形的周长为P,面积为

4、S,其内切圆半径为r,则rS等于 2P . 12.( 娄底中考 )如图,P是ABC的内心,连接PA,PB,PC,PAB,PBC,PAC的面积分别为S1,S2,S3.则S1 ” ),13.如图,三条公路两两相交,交点分别为A,B,C,现计划修建一个水库,要求到三条公路的距离相等,那么你能找到几个满足条件的地方?解:共四处.其一是三角形的内角平分线的交点,其他三处是三角形的相邻两个外角平分线的交点.,14.如图,在ABC中,AB=AC,O是ABC的内切圆,它与AB,BC,CA分别相切于点D,E,F. ( 1 )求证:BE=CE; ( 2 )若A=90,AB=AC=2,求O的半径.,解:( 1 )连

5、接OB,OC,OE. O是ABC的内切圆, OB,OC分别平分ABC,ACB,AB=AC,ABC=ACB, OBC=OCB,OB=OC, 又O是ABC的内切圆,切点为E, OEBC,BE=CE.,( 2 )连接OD,OF. O是ABC的内切圆,切点为D,E,F, ODA=OFA=A=90, 又OD=OF,四边形ODAF是正方形. 设OD=AD=AF=r, 则BE=BD=CF=CE=2-r, 在ABC中,A=90,15.如图,在ABC中,AC=BC,E是内心,AE的延长线交ABC的外接圆于点D.,16.如图,在ABC中,AD是边BC上的中线,BAD=CAD,CEAD,CE交BA的延长线于点E,BC=8,AD=3. ( 1 )求证:ABC为等腰三角形; ( 2 )求ABC的外接圆圆心P与内切圆圆心Q之间的距离.,解:( 1 )CEAD,BAD=E,CAD=ACE,BAD=CAD,ACE=E, AE=AC,BD=CD,AB=AE,AB=AC,ABC为等腰三角形. ( 2 )如图,连接BP,BQ,CQ.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学课件 > 中学教育

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1