1、12.1 二次函数教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:一、试一试1.设矩形花圃的垂直于墙的一边 AB 的长为 xm,先取 x 的一些值,算出矩形的另一边BC 的长,进而 得出矩形的面积 ym2试将计算结果填写在下表的空格中,AB 长 x(m) 1 2 3 4 5 6 7 8 9BC 长(m) 12面积 y(m2) 482x 的值是否可以任意取?有限定范围吗?3我们发现,当 A
2、B 的长(x)确定后,矩形的面积(y)也 随之确定, y 是 x 的函数,试写出这个函数的关系式,对于 1.,可让学生根据表中给出的 AB 的长,填出相应的 BC 的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思 考、 交流、发表意见,达成共识:当 AB 的长为 5cm,BC 的长为 10m 时,围成的矩形面积最大;最大面积为 50m2。对于 2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x 的值不可以任意取,有限定范围,其范围是 0 x 10。对于 3,教师可提出问题,(1)当
3、AB=xm 时,BC 长等于多少 m?(2)面积 y 等于多少?并指出 y=x(202x)(0 x 10)就是所求的函数关系式二、提出问题某商店将每件进价为 8 元的某种商品按每 件 10 元出售,一天可 销出约 100 件该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品 单价每降低 0.1 元,其销售量可增加 10 件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1商品的利润与售价、进价以及销售量之间有什么关系?利润=( 售价进价)销售量2如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? 108=2(元)
4、, (108)100=200(元)3若每件商品降价 x 元,则每件商品的利润是多少元?一天可销售约多少件商品? (108x);(100100x)4x 的值是否可以任意取?如果不能任意取,请求出它 的范围,x 的值不能任意取,其范围是 0x25若设该商品每天的利润为 y 元,求 y 与 x 的函数关系 式。y=(108x) (100100x)(0x2)将函数关系式 y=x(202x)(0 x 10化为:y=2x 220x (0x10)(1)将函数关系式 y=(108x)(100100x)(0x2)化为:2y=100x 2100x20D (0x2)(2)三、观察;概括1.教师引导学生观察函数关系式
5、(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有 1 个)(2)多项式2x 220 和100x 2100x200 分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及 P1 页的问题 2 有什么共同特点?让学生讨论、归结为:自变量 x 为何值时,函数 y 取得最大值。2二次函数定义:形如 y=ax2bxc (a、b、 、c 是常数,a0)的函数叫做 x 的二次函数, a 叫做二次函数的系数,b 叫做一次项的系数,c 叫作常数项四、课堂练习1.(口答)下列函数 中,哪些是二次函数?(1)y=5x1 (2)y=4x 21 (3)y=2x 33x 2 (4)y=5x43x12练习第 1,2 题。五、小结1请叙述二次函数的定义2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。六、作业:复习巩固 1 题教学反思: