1、1加法运算定律(2)加法结合律【教学内容】教材第 18 页例 2。【教学目标】1.理解并掌握加法结合律。2.能用符号表示加法结合律。3.培养学生分析推理的能力。【重点难点】经历运算定律的探索过程,发现规律、概括规律。【情景导入】师:前面我们已经学习了加法的一种运算定律加法交换律,那么什么是加法交换律?学生回答后,师强调:加法交换律中只是交换了两个加数的位置,但这两个加数不变。师:加法交换律用字母 a、b 怎么表示出来?指名回答。师:加法除了交换律外,还有没有其它的规律性知识?这些知识又有什么用途呢?这节课我们继续学习这方面的知识。【新课讲授】师:这里有三组算式,在里填上适当的符号。(12+13
2、)+1412+(13+14)(30+28)+60 30+(28+60)(320+150)+230320+(150+230)师:观察这三个等式,它们有什么相同的地方?针对以下问题小组讨论:等号左右两边的算式在运算顺序上有什么不同?但它们的结果怎样?从以上问题你发现了什么规律? 小组进行讨论,相互说出自己的发现。师:通过讨论,你发现了什么?师:大家发现的这个规律我们把它叫做加法结合律。师板书出课题。课件出示加法结合律的内容,全体齐读。师:用语言来叙述加法结合律很不方便,能不能用简单的方法表示出加法的结合律呢?师:如果用字母 a、b、c 分别表示三个加数,那么加法结合律怎样表示出来呢?师:等号左边表
3、示什么意思?右边呢?师:怎么应用加法结合律呢?下面我们来看这道题。课件出示练习:根据运算定律在下面的里填上适当的数。(2568)32 25()130(704)(130)64+37+163 64+()2指名学生回答。师:这三个等式都是根据哪个运算定律填写的?师:运用加法结合律可以观察到第 1、3 小题,后两个数相加凑成了什么数?第 2 题前两个数相加凑成什么数?(整百数)在计算时怎么样?(较简便)师:所以我们应用加法结合律有时可以使一些计算简便。出示例 2:师:指名学生说出图中信息,再说说能提出什么问题?让学生列出算式,88+10496师:怎样计算比较简便?要应用什么运算定律?指名学生板演,其余
4、学生在练习本上试做。同桌相互说说是怎么做的?订正时让板演的学生说出怎样做的?为什么这样做?运用了什么运算定律?8810496192+96288出示:32548075师:怎样计算比较简便?要应用什么运算定律?指名学生板演,其余学生在练习本上试做。同桌相互说说是怎么做的?订正时让板演的学生说出怎样做的?为什么这样做?都运用了什么运算定律?881049688(10496)指出应用加法结合律。88+200=288师:上边两道题在应用运算定律方面有什么不同?生:第一道是按从左到右的顺序计算,而第二道应用了加法结合律。师:第一道没有调换加数的位置,先把前两个数相加不可以使计算简便。而第二道题要先加后边的两
5、个数,再加前边的数才能使计算简便。师:加法结合律不止限于三个数相加,可以把它们推广到四个和四个以上的数相加。【课堂作业】1.你来当小判官:(1) 85+150=150+85( )(2)269 与 141 相加可以凑成整百数。 ( )(3) (26+8)+32+7=26+(8+32)+7 应用了加法结合律。 ( ) (4) 27+46+73=46+(27+73)只应用了加法交换律。 ( )2.学生先思考,然后指名回答,并说出错的原因。下面各题计算中应用了什么运算定律: (1)283+152+48=283+(152+48)=283+200=483 (2)154+87+246+13=154+246+
6、87+13=(154+246)+(87+13)=400+100=500师:哪一步应用了运算定律?应用了什么运算定律?3生:第一题应用了加法结合律,第二题先应用了加法交换律,又应用了加法结合律。【课堂小结】通过本节课的学习,你有什么收获?小结:加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,用字母表示(a+b)+c=a+(b+c)。【课后作业】1.教材第 19 页练习五第 1、3、4、5 题。2.完成练习册本课时的练习。第 2 课时加法运算定律(2)加法结合律(2568)32 25(68+32)130(704)(13070)464+37+163=64+(37+163)(a+b)+c=a+(b+c)