1、12.2 排序不等式1.了解排序不等式的“探究猜想证明应用”的研究过程.2.初步认识排序不等式的有关知识及简单应用.自学导引设 a1 a2 an, b1 b2 bn为两组实数, c1, c2, cn为 b1, b2, bn的任一排列,称 a1b1 a2b2 anbn为两个实数组的顺序积之和(简称顺序和),称a1bn a2bn1 anb1为两个实数组的反序积之和(简称反序和).称 a1c1 a2c2 ancn为两个实数组的乱序积之和(简称乱序和).不等式 a1bn a2bn1 anb1 a1c1 a2c2 ancn a1b1 a2b2 anbn称为排序原理,又称为排序不等式.等号成立(反序和等于
2、顺序和) a1 a2 an或 b1 b2 bn,排序原理可简记作:反序和乱序和顺序和.基础自测1.已知 a, b, cR *,则 a3 b3 c3与 a2b b2c c2a 的大小关系是( )A.a3 b3 c3a2b b2c c2aB.a3 b3 c3 a2b b2c c2aC.a3 b3 c30, a2 b2 c2,故顺序和为 a3 b3 c3,则 a2b b2c c2a 为乱序和,由排序不等式定理知 a3 b3 c3 a2b b2c c2a,故选 B.答案 B2.已知 a, b, cR *,则 a2(a2 bc) b2(b2 ac) c2(c2 ab)的正负情况是( )A.大于零 B.大
3、于等于零C.小于零 D.小于等于零解析 不妨设 a b c, a2 b2 c2, ab ac bc, a2 bc b2 ac c2 ab,由排序不等式定理, a2(a2 bc) b2(b2 ac) c2(c2 ab)0.2答案 B3.设 a1, a2, a3, an为正数,那么 P a1 a2 an与 Q 的大小关系是_.解析 假设 a1 a2 a3 an,则 ,1an 1an 1 1a 1a1并且 a a a a ,21 2 23 2nP a1 a2 a3 an ,是反顺和, Q 是乱顺和,由排序不等式定理 P Q.答案 P Q知识点 1 利用排序原理证明不等式【例 1】 已知 a, b,
4、c 为正数,求证: abc.b2c2 c2a2 a2b2a b c证明 根据所需证明的不等式中 a, b, c 的“地位”的对称性,不妨设 a b c,则 , bc ca ab.1a 1b 1c由排序原理:顺序和乱序和,得: .bca cab abc bcc caa abb即 a b c,b2c2 c2a2 a2b2abc因为 a, b, c 为正数,所以 abc0,a b c0,于是 abc.b2c2 c2a2 a2b2a b c1.已知 a1 a2 an, b1 b2 bn,求证:( a1b1 a2b2 anbn) (a1 a2 an)(b1 b2 bn).1n证明 令 S a1b1 a2
5、b2 anbn,则S a1b2 a2b3 anb1,S a1b3 a2b4 anb2,S a1bn a2b1 anbn13将上面 n 个式子相加,并按列求和可得nS a1(b1 b2 bn) a2(b1 b2 bn) an(b1 b2 bn)( a1 a2 an)(b1 b2 bn) S (a1 a2 an)(b1 b2 bn)1n即( a1b1 a2b2 anbn) (a1 a2 an)(b1 b2 bn).1n【例 2】 设 a1, a2, an是 n 个互不相同的正整数,求证:1 a1 .12 13 1n a222 a332 ann2证明 1 2 .112122 1n2设 c1, c2,
6、 cn是 a1, a2, an由小到大的一个排列,即 c10,则有 1a1 1a2 1an由切比晓夫不等式,得:a11a1 a21a2 an1ann ,a1 a2 ann 1a1 1a2 1ann即 ,nn a1 a2 ann 1a1 1a2 1ann .a1 a2 ann n1a1 1a2 1an2.已知 a, b, c 为正数, a b c.求证: .a5b3c3 b5c3a3 c5a3b3 1a 1b 1c证明 a b c0, a3 b3 c3,6 a3b3 a3c3 b3c3, ,又 a5 b5 c5,1a3b3 1a3c3 1b3c3由排序原理得: (顺序和乱序和),a5b3c3 b
7、5a3c3 c5a3b3 a5a3b3 b5b3c3 c5a3c3即 ,a5b3c3 b5a3c3 c5a3b3 a2b3 b2c3 c2a3又 a2 b2 c2, 1a3 1b3 1c3由乱序和反序和得: a2b3 b2c3 c2a3 a2a3 b2b3 c2c3 .1a 1b 1c .a5b3c3 b5c3a3 c5a3b3 1a 1b 1c基础达标1.已知 a, b, cR 则 a3 b3 c3与 a2b b2c c2a 的大小关系是( ) A.a3 b3 c3 a2b b2c c2aB.a3 b3 c3 a2b b2c c2aC.a3 b3 c3 a2b b2c c2aD.a3 b3
8、c3 a2b b2c c2a解析 根据排序原理,取两组数 a, b, c; a2, b2, c2,不妨设 a b c,所以 a2 b2 c2.所以 a2a b2b c2c a2b b2c c2a.答案 B2.设 a1, a2, an都是正数, b1, b2, bn是 a1, a2, an的任一排列,则a1b a2 b anb 的最小值是( ) 11 12 1nA.1 B.nC.n2 D.无法确定解析 设 a1 a2 an0.可知 a a a ,由排序原理,得 a1b a2b 1n 1n 11 11 anb a1a a2a ana n. 12 1n 11 12 1n答案 B73.已知 a, b,
9、 cR ,则 a2(a2 bc) b2(b2 ac) c2(c2 ab)的正负情况是( )A.大于零 B.大于等于零C.小于零 D.小于等于零解析 设 a b c0,所以 a3 b3 c3,根据排序原理,得 a3a b3b c3c a3b b3c c3a.又知 ab ac bc, a2 b2 c2,所以 a3b b3c c3a a2bc b2ca c2ab0所以 a4 b4 c4 a2bc b2ca c2ab.即 a2(a2 bc) b2(b2 ac) c2(c2 ab)0.答案 B4.已知 a, b, c 都是正数,则 _.ab c bc a ca b解析 设 a b c0,所以 .1b c
10、 1c a 1a b由排序原理,知 , ab c bc a ca b bb c cc a ab a , ab c bc a ca b cb c ac a ba b,得 .ab c bc a ca b 32答案 325.证明切比晓夫不等式中的(2).即,若 a1 a2 an,而 b1 b2 bn或a1 a2 an而 b1 b2 bn,则 a1b1 a2b2 anbnn (a1 a2 ann ).当且仅当 a1 a2 an或 b1 b2 bn时等号成立.(b1 b2 bnn )证明 不妨设 a1 a2 an, b1 b2 bn.则由排序原理得:a1b1 a2b2 anbn a1b1 a2b2 an
11、bna1b1 a2b2 anbn a1b2 a2b3 anb1a1b1 a2b2 anbn a1b3 a2b4 an1 b1 anb2a1b1 a2b2 anbn a1bn a2b1 anbn1 .8将上述 n 个式子相加,得:n(a1b1 a2b2 anbn)( a1 a2 an)(b1 b2 bn)上式两边除以 n2,得:a1b1 a2b2 anbnn .(a1 a2 ann )(b1 b2 bnn )等号当且仅当 a1 a2 an或 b1 b2 bn时成立.6.设 a1, a2, an为实数,证明: .a1 a2 ann证明 不妨设 a1 a2 an,由切比晓夫不等式得:a1a1 a2a
12、2 anann ,(a1 a2 ann ) (a1 a2 ann )即 ,(a1 a2 ann )2 .a1 a2 ann综合提高7.设 a1, a2, an为正数,求证: a1 a2 an.证明 不妨设 a1a2an0,则有 a a a21 2 2n也有 BC,则有 abc由排序原理:顺序和乱序和 aA bB cC aB bC cAaA bB cC aC bA cBaA bB cC aA bB cC9上述三式相加得3(aA bB cC)( A B C)(a b c)( a b c) .aA bB cCa b c 3方法二:不妨设 ABC,则有 abc,由切比晓夫不等式 ,aA bB cC3
13、A B C3 a b c3即 aA bB cC (a b c), 3 .aA bB cCa b c 39.设 a, b, c 为正数,利用排序不等式证明 a3 b3 c33 abc.证明 不妨设 a b c0, a2 b2 c2,由排序原理:顺序和反序和,得:a3 b3 a2b b2a, b3 c3 b2c c2bc3 a3 a2c c2a三式相加得 2(a3 b3 c3) a(b2 c2) b(c2 a2) c(a2 b2).又 a2 b22 ab, b2 c22 bc, c2 a22 ca.所以 2(a3 b3 c3)6 abc, a3 b3 c33 abc.当且仅当 a b c 时,等号
14、成立.10.设 a, b, c 是正实数,求证: aabbcc( abc) .a b c3证明 不妨设 a b c0,则 lg alg blg c.据排序不等式有:alg a blg b clg c blg a clg b alg calg a blg b clg c clg a alg b blg calg a blg b clg c alg a blg b clg c上述三式相加得:3(alg a blg b clg c)( a b c)(lg alg blg c)即 lg(aabbcc) lg(abc),故 aabbcc( abc) .a b c3 a b c311.设 xi, yi (
15、i1,2, n)是实数,且 x1 x2 xn, y1 y2 yn,而10z1, z2, zn是 y1, y2, yn的一个排列.求证: (xi yi)2 (xi zi)2.n i 1 n i 1证明 要证 (xi yi)2 (xi zi)2n i 1 n i 1只需证 y 2 xiyi z 2 xizi.n i 12i n i 1 n i 12i n i 1因为 y z ,n i 12i n i 12i只需证 xizi xiyi.n i 1 n i 1而上式左边为乱序和,右边为顺序和.由排序不等式得此不等式成立.故不等式 (xi yi)2 (xi zi)2成立.n i 1 n i 112.已知 a, b, c 为正数,且两两不等,求证:2( a3 b3 c3)a2(b c) b2(a c) c2(a b).证明 不妨设 abc0.则 a2b2c2, a ba cb c, a2(a b) b2(a c) c2(b c)a2(b c) b2(a c) c2(a b),即 a3 c3 a2b b2a b2c c2ba2(b c) b2(a c) c2(a b),7 又 a2b2c2, abc, a2b b2aa2(b c) b2(a c) c2(a b).