内蒙古集宁一中西校区2019届高三数学上学期第一次月考试题理.doc

上传人:priceawful190 文档编号:1168841 上传时间:2019-05-16 格式:DOC 页数:7 大小:741KB
下载 相关 举报
内蒙古集宁一中西校区2019届高三数学上学期第一次月考试题理.doc_第1页
第1页 / 共7页
内蒙古集宁一中西校区2019届高三数学上学期第一次月考试题理.doc_第2页
第2页 / 共7页
内蒙古集宁一中西校区2019届高三数学上学期第一次月考试题理.doc_第3页
第3页 / 共7页
内蒙古集宁一中西校区2019届高三数学上学期第一次月考试题理.doc_第4页
第4页 / 共7页
内蒙古集宁一中西校区2019届高三数学上学期第一次月考试题理.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、- 1 -集宁一中西校区 2018-2019 学年第一学期第一次考试高三年级理科数学试题本试卷满分 150 分,考试时间为 120 分钟。第卷 (选择题 共 60 分)一、选择题(在下列各题的四个选项中,只有一项是最符合题意的。每小题 5 分, 共 60分。 )1.设集合 , ,则 2|430Ax|230BxABA. B. C. D.3(,)(,)(1,)3(,)22.命题“ x0(0, + ),ln x0=x0-1”的否定是( )A.x0(0, + ),ln x0 x0-1 B.x0(0,+ ),ln x0=x0-1C.x(0, + ),ln x x-1 D.x(0,+ ),ln x=x-1

2、3.函数 的零点所在的大致区间是( )2()ln)f=+-A.(0,1) B.(1,2) C.(2,e) D.(3,4)4.已知向量 ,且 ,则 ( )(1,)(3,)amv, b(a)brv+mA.8 B.6 C.6 D.85.下列函数中,在区间 (,) 上为减函数的是()A. 1yx B. cosyx C. ln(1)yx D. 2xy-=6.已知函数 f(x)=Asin(x+ ) 的部分图象,如图所示,则函数y=f(x)对应的解析式为( )A.y=2sin B.y=2sinC.y=2cos D.y=2cos7.函数 的图象大致ln()2xf为( )- 2 -8.将函数 图象向左平移 个长

3、度单位,再把所得图象上各点的横坐标缩短1cos()26yx3到原来的一半(纵坐标不变) ,所得图象的函数解析式是( )A B C Ds(+)1cos4yxcosyx1cos()43yx9.若 3tan4 ,则 2csin A. 625 B. 85 C. 1 D. 162510.若命题 p:函数 y=x2-2x 的单调递增区间是1,+),命题 q:函数 的单调递增区间yx=-是1,+),则 ( )A.pq 是真命题 B.pq 是假命题C. 是真命题 D. 是真命题pq11.已知函数 的定义域为 ,当 时, 3()1fx;当 1x 时,()fxR0pq件,求实数 m 的取值范围.19.(12 分)

4、已知函数 f(x)=sin2x+ sin xsin (0)的最小正周期为 ()2xpw+2p(1)写出函数 f(x)的单调递增区间;(2)求函数 f(x)在区间 上的取值范围.0,3p20. (12 分)在 ABC 中, 22acbac.(1)求 B 的大小(2)求 cosAC 的最大值.- 4 -21. (12 分) 设函数 32.fxabxc(1)求曲线 .y在点 0,f处的切线方程;(2)设 4ab,若函数 x有三个不同零点,求 c 的取值范围;22. (12 分)设函数 , 2lnfk0(1)求 的单调区间和极值;fx(2)证明:若 存在零点,则 在区间 上仅有一个零点fx1,e- 5

5、 -1.D 2.C 3.B 4.D 5.D 6.A 7.B 8.C 9.A 10.D 11.D 12.B13.14.15. 16.17.解:由已知得=3+2,tan =.cos 2(-)+sincos+2sin 2(-)=cos2+(-cos )(-sin )+2sin 2=cos 2+sin cos +2sin 218.解:由2,得-2x10,所以 p:A=x|x10 或 x0),所以 q:B=x|x1+m 或 x0.因为 p 是 q 的充分不必要条件,所以 AB.结合数轴有解得 00).所以 =2,即 f(x)=sin.于是由 2k-4x-2k+(kZ),解得x(kZ).所以 f(x)的单

6、调递增区间为(kZ).(2)因为 x,所以 4x-,所以 sin,所以 f(x).故 f(x)在区间上的取值范围是.20.(1) ;(2) .- 6 -21.(1) ;(2)(II)当 时, ,所以 令 ,得 ,解得 或 与 在区间 上的情况如下:- 7 -所以,当 且 时,存在 , ,使得 22.(1)由 , ( )得 .由 解得 . 与 在区间 上的情况如下:所以, 的单调递减区间是 ,单调递增区间是 ;在 处取得极小值 .(2)由()知, 在区间 上的最小值为 .因为 存在零点,所以 ,从而 .当 时, 在区间 上单调递减,且 ,所以 是 在区间 上的唯一零点.当 时, 在区间 上单调递减,且 , , 所以 在区间 上仅有一个零点.综上可知,若 存在零点,则 在区间 上仅有一个零点.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试资料 > 中学考试

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1