1、1乾安七中 20182019 学年度下学期第一次质量检测高二数学(文)试题 1、选择题 (每小题只有一个选项正确。每小题5分,共60分)1.复数 2iz( 是虚数单位) ,则 z的虚部是 ( )A 3 B 1 C 12 D 12i2在极坐标系中,点 与 的位置关系为( ),-,A. 关于极轴所在直线对称 B.关于极点对称 C. 重合 D.关于直线 对称2R3.下面几种推理过程是演绎推理的是 ( )A 两条直线平行,同旁内角互补,如果 A和 B是两条平行直线的同旁内角,则 A+B= 180B 由平面三角形的性质,推测空间四面体的性质C 某校高三共有 10 个班,1 班有 51 人,2 班有 53
2、 人,三班有 52 人,由此推测各班都超过50 人D 在数列 na中, 1, )2(1(1naann ,计算 432,a,由此推测通项 n4.对于两个变量 和 进行回归分析,得到一组样本数据: , , xy 1,xy2,2则下列说法不正确的是( ),nxyA.由样本数据得到的回归直线 必经过样本点中心 ybxa,xyB.残差平方和越小的模型,拟合的效果越好 C.用 来刻画回归效果, 的值越小,说明模型的拟合效果越好 2R2RD.若变量 和 之间的相关系数 r=-0.9362,则变量 和 之间具有线性相关关系yx5.曲线 C 经过伸缩变换 后,对应曲线的方程为: ,则曲线 C 的方12yx程为(
3、 )A. B. C. D. 4x2+9y2=16圆的极坐标方程为 =2(cos+sin),则该圆的圆心极坐标是( )41A, 42B, 421C, D,7.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( )A. 有两个内角是钝角 B. 有三个内角是钝角C. 至少有两个内角是钝角 D. 没有一个内角是钝角8.把 1,3,6,10,15,这些数叫作“三角形数”,这是因为这些数目的点可以排成一个正三角形,则第 15 个三角形数是( )A. 120 B. 105 C. 153 D. 919已知数列 的前 n 项和 , ,通过计算 ,a2nnSaA1234,a猜想 =( )nA. B.
4、C. D. 2121n31n2n1310.直线 (t 为参数)的倾斜角为( )123xyA. B. C. D. 6235611.已知 x,y 的取值如下表:x 0 1 4 5 6 8y 1.3 1.8 5.6 6.1 7.4 9.3从所得的散点图中分析可知:y 与 x 线性相关,且 ,则 x=13 时, ( axy95.0 y)1.45A12.8B31C13.8D12.两个圆 的公共部分的面积是( )cos,inA. B. C. D. 2422二、填空题:(本大题共 4 小题,每小题 5 分,共 20 分)13.M 的极坐标为 ,则它的直角坐标是 32,14.已知 M(-2,0) ,N(2,0
5、) ,则以 MN 为斜边的直角三角形的直角顶点 P 的轨迹方程为 15.已知在极坐标系下,点 , O 是极点,则 AOB 的面积等于_6A, 324B,16.下列命题:两个复数不能比较大小;若 x,y ,则 的充要条件是Ciyx1; 若实数 a 与 ai 对应,则实数集与纯虚数集一一对应;实数集相对复数集1yx的补集是虚数集.其中,是真命题的有_.(填序号)三、解答题:(本大题分 6 小题共 70 分)17.(本题满分 10 分)当实数 m 取何值时,在复平面内复数对应的点满足下列条件:imz422(1)在实轴上;(2)在直线 x-y+3=0 上;(3)在第三象限。418(本题满分 12 分)
6、已知直线的极坐标方程为 3cos-4sin=3,求点到这条直线的距离23P,19.(本题满分题 12 分) 当前奔跑吧兄弟第三季正在热播,某校一兴趣小组为研究收看奔跑吧兄弟第三季与年龄是否相关,在某市步行街随机抽取了 110 名成人进行调查,发现 45 岁及以上的被调查对象中有 10 人收看,有 25 人未收看; 45 岁以下的被调查对象中有 50 人收看,有 25 人未收看试根据题设数据完成下列 2列联表,并说明是否有 99.9%的把握认为收看奔跑吧兄弟第三季与年龄有关;收看 未收看 总计45 岁以上45 岁以下总计20.(本题满分 12 分)如表提供了某厂生产甲产品过程中记录的产量 x(吨
7、)与相应的生产能耗 y(吨标准煤)的几组对照数据: 5x 2 4 6 8 10y 5 6 5 9 10()请根据上表提供的数据,用最小二乘法求出 y 关于 x 的线性回归方程 = x+ ;()根据(1)求出的线性回归方程,预测生产 20 吨甲产品的生产能耗是多少吨标准煤?(参考公式: , 参考数值:niiixyb12 xba25+46+65+89+1010=236)21.(本题满分 12 分)已知曲线 C 的极坐标方程为 ;sin16co94222(1)若以极点为原点,极轴所在的直线为 x 轴,求曲线 C 的直角坐标方程;(2)若 P(x,y)是曲线 C 上一个动点,求 x+y 的最大值.22
8、.(本题满分 12 分)已知在直角坐标系 xOy 中,曲线 C 的参数方程为( 为参数),直线 l 经过定点 P(3, ),倾斜角为x5cos,yin 534(1)写出直线 l 的参数方程和曲线 C 的普通方程.(2)设直线 l 与曲线 C 相交于 A,B 两点,分别求 和 的值PABP6乾安七中 20182019 学年度下学期第一次质量检测高二数学试题 (文)参考答案一、 选择题BDACA BCAAC DA二、填空题13.(1, ) 14. 15. 4 16. 3242xy三、解答题17、 (1)m=3或m=-2 (2)m=3 (3) 0m3 (10分)18 、 1 (12分)19、(1)收看 未收看 总计45 岁以上 10 25 3545 岁以下 50 25 75总计 60 50 110(6 分) (2) 有 %把握认为有关(12 分) 82.103.97K29.720、 (1) (10 分)1.365.01.365.076.52067 xy ab,(2) (吨) (12 分),21、 (1) (6 分 )962(2) .(12 分)5)(maxy22、解:(1)6 分 为 参 数 )tyx(253 522)( yx() 12 分 4PBA3PB