1、Date of Issue: June 1996 Affected Publication: Addendum to Chapter 11, “Physical hoperties Data,” Section 2, Part 2-Com- pressibility Factors for Hydrocarbons, Correlation of Vapor Pressure for Commercial Natural Gas Liquids of the Manual of petroleum Measurement Standards, First Edition, December 1
2、994 (1st printing) ERRATA Page 22, mid-page, correct the following code: Old code: A = 6.4837DO Corrected code: A = 6.4827DO Page 22, near the bottom of the page, correct the following code: Old code: A = 2.085371Dl Corrected code: A = 2.08537Dl Page 23, Line 12, correct the following code: Old code
3、: K = (C+D*RDEN) 1553.0DO * 1 .OD5 Corrected code: K = (C+D*RDEN) I 543.0DO * 1 .OD5 Manual of PetroleumMeasurement StandardsChapter 11.2.2Compressibility Factors for Hydrocarbons: 350637 Relative Density (60F/60F) and 50F to 140F MeteringTemperatureSECOND EDITION, OCTOBER 1986REAFFIRMED, DECEMBER 2
4、012Manual of PetroleumMeasurement StandardsChapter 11.2.2Compressibility Factors for Hydrocarbons: 350637 Relative Density (60F/60F) and 50F to 140F MeteringTemperatureMeasurement CoordinationSECOND EDITION, OCTOBER 1986REAFFIRMED, DECEMBER 2012 STD-API/PETRO MPMS 11*2-2-ENGL 1786 0732290 0562281 80
5、8 Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use in connection with any method, apparatus, or product covered by letters patent nor as indemnifying anyone from or against any liability for infringement
6、 of letters patent. This publication may be used by anyone desiring to do so. The Institute hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use; for the violation of any federal, state, or municipal regulation with which an API publication may conflic
7、t; or for the infringement of any patent resulting from the use of an API publication. Every effort has been made by the Institute to assure the accuracy and reliability of the data presented. copyright 0 1986 American petroleum institute STD.API/PETRO MPMS LL*Z.Z-ENGL L78b 0732270 05b2282 744 FOREW
8、ORD This publication provides tables to correct hydrocarbon volumes metered under pressure to corresponding volumes at the equilibrium pressure for the metered temperature. The parallel publication in metric (SI) units is the Manual of Petroleum Measurement Stun- dards, Chapter 11.2.2M. The table pr
9、esented id this volume is also available from API as a computer tape, along with a manual containing the text information in this publication. Suggested revisions are invited and should be submitted to the director, Measurement Coordination Department, American Petroleum Institute, 1220 L Street, N.
10、W., Wash- ington, D.C. 20005. iii COMMITTEE ON STATIC PETROLEUM MEASUREMENT WORKING GROUP ON COMPRESSIBILITY F. P. Gielzecki (Retired) Imperial Oil, Ltd. K. M. Goin, Ph.D. Cities Service Oil and Gas Corporation K. T. Liu, Ph.D. Chevron Oil Field Research Company M. A. Plummer, Ph.D. Marathon Oil Com
11、pany R. A. Griffith (Chairman, Retired) Texaco Trading and Transportation Company J. Polowek Interprovincial Pipe Line Ltd. R. B. Hall Texas Eastern Transmission Company J. A. Hamshar Cities Service Oil and Gas Corporation G. W. Singletary (Deceased) Texas Eastern Transmission Company G. W. Swinney
12、(Retired) Phillips Petroleum Company STD*API/PETRO MPMS LL*2-2-ENGL 178b m 0732270 05b228Li 517 m CONTENTS CHAPTER 1 1.2.2-COMPRESSIBILITY FACTORS FOR HYDRO- CARBONS: 0.350-0.637 RELATIVE DENSITY (60“F/60F) AND -50F TO 140F METERING PAGE 11.2.2.2 History and Development 1 11.2.2.3 Type of Standard a
13、nd Limits . 1 1 1.2.2.4 Example Use of the Standard 1 11.2.2.5 Data Base 2 11.2.2.6 Basic Model 5 11.2.2.7 Uncertainty Analysis . 6 11.2.2.8 Calculation Procedure 8 11.2.2.9 References . 10 Table of Compressibility Factors for Hydrocarbons: 0.350-0.637 Relative Text Tables TEMPERATURE 11.2.2.1 scope
14、 1 Density (60F/600F) and -50F to 140F Metering Temperature 11 1-Summary of Data Base . 2 4 6 Nearest 0.25“C Versus the Nearest 03F . 6 2-Data Mixture Compositions (Mole Percent) . 3-Effect of Pressure on Compressibility Factors . +Expected Frequency of Errors When Using Temperatures to the Figures
15、1-Limits of Data Base by Relative Density and Temperature . 3 Temperature and Relative Density 7 2-Uncertainties (95-Percent Confidence Level) in Volume Versus V STD.API/PETRO MPMS LL.2.2-ENGL L78b m 0732290 05b2285 453 Chapter 1 1 -Physical Properties Data SECTION 2-VOLUME CORRECTION FACTORS FOR ME
16、TER PROVING AND HYDROCARBON COMPRESSIBILITY 11.2.2 Compressibility Factors for Hydrocarbons: 0.350-0.637 Relative Density (6O0F/6O“F) and -50F to 140F Metering Temperatu re 11.2.2.1 SCOPE The purpose of this standard is to correct hydrocarbon volumes metered under pressure to the corresponding vol-
17、umes at the equilibrium pressure for the metered tempera- ture. This standard contains compressibility factors related to the meter temperature and relative density (6O0F/60“F) of the metered material. The corresponding metric (SI) ver- sion is Chapter 11.2.2M. 11.2.2.2 HISTORY AND DEVELOPMENT The p
18、revious APl standard for hydrocarbon compressi- bility, Standard 1101, Measurement of Petroleum Liquid Hydrocarbons by Positive Displacement Meter, was devel- oped from graphical correlations prepared in 1945. This standard was based on limited data with only a few points for pure fluids in the rang
19、e from propane to pentane. No lighter mixtures and no effect of pressure on the compress- ibility factor were considered. In 198 1, the Committee on Static Petroleum Measurement formed a subcommittee, the Hydrocarbon Compressibility Group, to revise the compressibility tables of Standard 1 10 I. As
20、a result of an extensive literature survey, the data base found for the relative density portion of the table covers a broader range than that used in Standard 1101 but is lacking in data for unsaturated hydrocarbons. The data base was used to develop a mathematical model that includes the effect of
21、 pressure on the compressibility factor. The printed table produced from the model is the standard. This standard replaces the discontinued Standard 1101 and the first edition of Chapter 11.2.2, Compressibility Factors for Hydrocar- bons: 0.500-0.411 Relative Density Range and 20-128oF. 11.2.2.3 TYP
22、E OF STANDARD AND LIMITS The actual standard is the printed table of 224 pages that follows this text. The increments used in the table are OST and 0.002 relative density. Interpolation to 0.001 relative density is allowed. Compressibilities are in the usual units of reciprocal pounds per square inc
23、h but are calculated from two terms, A and B, and the pressure difference from equi- librium, D,. This is necessary to obtain the desired accuracy in volume because of the important effct of pressure on the Compressibility factor for light hydrocarbons. The range of the table is from -50F to 140F an
24、d from 0.350 to 0.637 relative density (60“F/60F), for use with pressure differences above equilibrium from O to 2200 pounds per square inch. The equation used to generate the table is given for those who wish to duplicate the table using their specific computer and language. Identical table informa
25、tion is available on a computer tape. The use of this computer tape to verify individually developed computer subroutines is highly rec- ommended. 11.2.2.4 EXAMPLE USE OF THE STANDARD In this standard, the compressibility factor (F) is used in the normal manner for volume correction (* denotes mul-
26、tiplication) : Where: CP1 = correction factor for pressure. Ve = volume at the equilibrium (bubble point) V, = volume at the meter pressure, P,. pressure, P, . D, = P, - P,. P, and P, may be in either pounds per square inch gage or pounds per square inch absolute, but both must be in the same units.
27、 As an example, calculate the volume at equilibrium pres- sure of lo00 barrels (V,) of a material with a relative density (6OW6O“F) of 0.5297 metered under*a pressure of 500 pounds per square inch at a temperature of 55.1“F. The equilibrium pressure (P,) for this material at 55.1T is 45 pounds per s
28、quare inch. The rounded relative density and temperature values of 0.530 and 550F yield an A factor of 35,641 and aB factorof 5.516. Thecompressibiiityfactor (F) is Calculated as follows: F = 1/(A + D, * B) = 1/35,641 + (500 - 45) * 5.5161 = O.oooO2621 The value for F is rounded to the eighth decima
29、l place, to the maximum of four significant digits. 1 2 CHAPTER 11-pWSICAL PROPERTIES DATA Then, C, = 1/1.0 - 0.00002621 * (500 - 45) = 1.0121 The value for Cpl is rounded to the maximum of four decimal places. ve = v, * c, = lo00 * 1.0121 = 1012 barrels The value for Ve is rounded to the nearest wh
30、ole barrel. For additional examples and more details, see Chapter 12.2, Calculation of Liquid Petroleum Quantities Measured by Turbine or Displacement Meters. 11.2.2.5 DATA BASE An initial 2278 data points were obtained from the lit- erature for pure fluid compounds and mixtures of light hy- drocarb
31、on liquids. These data were examined to eliminate data for gases, data with large errors, and data with other abnormalities. The final data base used in this standard consists of 1724 data points from 13 sources (see Table i). The ranges of the experimental data were relative den- sities (60F/60“F)
32、from 0.3477 to 0.6312, temperatures from - 28F to 160“F, and pressure differences from 41 to 2036 pounds per square inch gage (see Figure i). The actual ranges for the standard, as determined by an API survey, are relative densities (6O“F/6O0F) from 0.350 to 0.637, tem- peratures from -50F to 140“F,
33、 and pressure differences from O to 2200 pounds per square inch gage. Hence, some portions of the standard represent extrapolated results. The uncertainty analysis presented in 11.2.2.7 may not be valid for these extrapolated portions. For the lower relative den- sities, 140F is above the pseudocrit
34、ical temperam at which liquid exists. For these fluids, the range is restricted to 96 percent of the pseudocritical temperature. The data set contains 46 different mixtures of normal hydrocarbons from methane to decane. The compositions of the mixtures are listed in Table 2. The use of the standard
35、for compositions not close to those in the data base repre- sents an extrapolation whose results may have a greater uncertainty. Table 1-Summary of Data Base Pressure Relative (pounds Number Density Temperature psquare of Data Sample (60“/60“F) (“F) inch gage) Points References NGPA/TP2 0.35-0.61 32
36、-140 180-2000 455 12 NGPA/TPl 0.35-0.51 40-130 150-2000 218 21 Cal Tech 0.50-0.63 70-160 100-2000 157 9, 10, 13, 14, 15, 16. 17 Tulsa 0.35-0.51 -20-120 100-1500 542 I ManleylSwit 0.508 -20-100 300-1600 13 8 0.356 - 25-63 198- 1788 36 11 18 pope 0.356 - 28-66 320-2200 67 Dousri 0.356 - 13-32 460-2100
37、 5 3 straty Dittmar 0.508 32-140 140-2120 33 2 0.51-0.58 -28-80 242-2040 81 5, 6.7 0.508 -28-100 121-2130 57 4 Hayaes ThOmsS 0.508 32- 122 121-1477 50 20 ElY Tekhamm 0.508 122-149 400-1465 10 19 STD-API/PETRO MPMS LL-Z*Z-ENGL L98b 0732290 05b2287 22b SECTION 2-VOLUME CORRECTION FACTORS 3 + + + + + +
38、 * * * * + $ + + + + + + + $ + * + + * + * t + + + + + * * + * * + + + P * + * * + t + + + + + + + u 4H+*cIc+i am m O U 00 m- NO rn. mr- mm in0 00 N. mr- (ON mo CD0 N. mr- NP Nm mW fiin -m ma O= Nr- ma mrn ma ma (34 inm ma m- (Do ma (um NN ma Of b- WO S? N? S? O? z? g? O? E? Om Nm -m o- mm Nm mm mm
39、Nr 0. bW Wo No Nm mo 0 No U)O dm NW m. NW um am In o 0 ow NO -0 m. mr- O0 O0 r-O N. mr- mm am om N. ma ao inm -0 N* ma -a inb ma aa inO ma mm Om Nm ma -o mo ma N- Nm ma NQ O- om o. mo -o -0 *O mm Om mm O? !? C. $0, G? O? gr ON mt- bao m. NO Nin -In NO t-r- mm g? NO o- ;: am 9 ? o a- om -m Ni ma NP m
40、o r-Q, -. ma am om ma NI- aN -a ma or- a- C. -. :? ma r-O mm 0. #in mm o. ma PN ND Om O ma Nm aa r-Q m. (va OP Oin inm m. NW om am m. Na mm NN Om Nm Nm Nw ma O0 m. NO Om mW Inr- m. NO mm WO mr- m. NO O0 -b m. NO mm min am O m o min Pm Ot- m. NO mt- mrc ot- m- No * OW NIn Nb m. NO mm (Ym Ob m. NO am
41、vi N o N c STD-API/PETRO MPMS 11-2-2-ENGL 178b 0732290 05L2277 175 O m O m m r- m O W b m O P b m O N r- m O O r- m O m t- J I u u m v v) W K n I O u m u) m O W In 0 O 0 In m O N u) m O O u) m O LO ION WWP CO I n. mm ON O? mm ma m- N? mm Nr- I-O o. ma mm mm am am O. ma u)+ r-m lTQ o. ma OW mb o. mW
42、mt -a QQ m. NID In- *In m. NW al- mm m. NW r-N mN om Inm mm om a. NW al- 00 r-m m* NW PO or- m. NW -N Pl- mr- NW ICO Nu) -PI NID mu) No ar- b. NCD cDm m. m. 2s br- I- NW am In P - I Po 00, -m ma -. r-r- o. ma mm r-12 0. mm mm r-m Pm om ma -m o. ma mr- mm Com 2, bW OP m- NW tm om NW am mm m. mo om m.
43、 (ON NW Po -0 NW l-O WQ, mr- m. Nul OP mr- mr- Nu) -r- Ou) -I- NW No ar- l-* NW NO I-N WP. b. NCD -0 r-O PI- r-. NW mm m. m- m. mo mm r-t- NCD r-* NCD um 3 O q ma mm mm O. mo mm ma mm Nr- WQ o. -W ma o. mu7 bQ -u) o. OW mr- NP m. Nul bo Pm m. NO Inm r-N -m m. NW om r-m om -m ma m. -0 NW PIP mm Wb m.
44、 NW -m -l- Pl- Q. NW u)m r-CD -r- m. NO mrn PP mr- r-. NW mr- NN l-r- r-. NW om NO u)+ b. NU -m Nm NW ow om -CD b. NW =w um In m m l mr- OU) o. am mm Pm mm mm o. ma 00 m. NW mm mq mm mm g? Na ar- ON Pm m. NW r-u) N- -a m. NW r-N u)O NW mm m. wm mm or- m. NU) Pm Pr- mr- m. NW -I- Ou) -IC m. NW b- WP
45、r-. NW mr- Nm PN ar- b NW Win NO Pb r- NW mu) -Q NW l- NW -u) NW OW r-. NW mq OP W. NW ow um m In m I mQ Pm om o. mm -m -m mw O ma r-m Nm m. NW No) mN m. NW Wb P- Nm m. NW mm u)m mu) WO mm m. NW m- ar- Na mb mr- Pl- NW mm m. m. mri mu) m. -r- NW WO PP or- r-. NW mm -N I-r- b* NW mN Pr- r-* NW wm r-m
46、 NW b. NW m- a- PW om NU) NW m. m- mm mr- OW Is. NW Nm NIn W. NW ma mm -o WW W. NW -P ma -o W. Na mw Pb NW :? am u) u) 0 I NO a0 cn Na WO -r- m NU) a0 m. NU) vm om mm mr- -m m. r-U) or- NW - I- J C( U z o v) v) W K P u m In m O O In m O t Lo m O N Lo m O Lo m O STD.API/PETRO MPMS LL-2-2-ENGL L78b 07
47、32270 05b2278 OOL m- mm -r. m. Na P- mb ar- m. NW QO mm Inr. m* NW mm m. InU NI- NW WIn r-m mI- +* NO r- ON r.r. I-. NW FI- PO or- b. NW In- mm -a I-* NO mm mr- NW Om NI0 I-0 W. NW Inm mm NW O0 mN NO o- r-O OW W. NO I-O I-m mLo Lo- NO Om mln OLo m. NO NO -m NO QW $W 2: $vi am a“? soo wwm ca I W- I-r
48、. or- al NW P- r-W ar- Q. NU O0 mr- Q. NO Lob mm Or- m. NW mm ms mr5 b. NW - In- Inr- r NW NW mm Na -0 Im OW r- NU OP OW W. NW ma WP Loa W. NW InQ PN OW W. NW -m 00 -a W. NW Om Nm NW Om ma I-In Lo. NID mm oo NW $0 -W W. NID Or- mm mm m. NU Pm ar- DM m. NO r-O PL0 Pm In. NW Om Pm NUI m. NW -aD o- NID
49、 NW Inm aDP O. NW NP I-l- NO NO OIn NW :? $? :4 am vi O m I (ON O)O) WW r-. NW mo Om Pa b+ NW r-m -a -(o I-* NO m* ON NW NO 00 (Va :? :? p4 Z? 24 am In m N I NN NW NW r- NW NO om OW W. NW OP- mm WW W. NW am r-N ma W. NW Nm -0 -Co W. NW IC0 r5m 0. NW NO am NCO mm :? 2: ? :4 -m WW NW O)W WP -0 o. NI0 am mN NO mo -0 NO Qv) el- NcD rs :? %? sm v) I- N I mN o9 OW (0 NW Ob) NN gw NW OW b- ma W. NU2 mN WO OW W. Nu, WW OW mm m. NW NO mr- mm m. NW r-P OLO mm m- NW -a r-m Om In NW mr- P- t. NW Inm NO CI P* NW Wr- -r