1、Designation: E1932 12 (Reapproved 2017)Standard Guide forAcoustic Emission Examination of Small Parts1This standard is issued under the fixed designation E1932; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revis
2、ion. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide covers techniques for conducting acousticemission (AE) examinations of small parts. It is confined toexamination obje
3、cts (or defined regions of larger objects)where there is low AE signal attenuation throughout theexamination region. This eliminates the consideration of com-plex attenuation factor corrections and multiple sensor andarray placements based on overcoming signal losses overdistances.1.2 The guide assu
4、mes a typical AE examination as onewhere there is a controlled or measured stress acting upon thepart being monitored by AE. Particular emphasis is placed onsensor and system selection, sensor placements, stressingconsiderations, noise reduction/rejection techniques, spatialfiltering, location deter
5、mination, use of guard sensors, collec-tion of AE data, AE data analysis and report. The purpose ofthe AE examination is to analyze how an object underevaluation is withstanding the applied load.1.3 Possible applications of this guide includes materialscharacterization, quality control of production
6、 processes, prooftesting after fabrication, evaluating regions of interest of largerstructures and retesting after intervals of service. The appliedload may include mechanical forces (tension, compression ortorsional) internal pressure and thermal gradients.1.4 This standard does not purport to addr
7、ess all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.5 This international standard was developed in accor-da
8、nce with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM St
9、andards:2E650 Guide for Mounting Piezoelectric Acoustic EmissionSensorsE750 Practice for Characterizing Acoustic Emission Instru-mentationE976 Guide for Determining the Reproducibility ofAcousticEmission Sensor ResponseE1316 Terminology for Nondestructive ExaminationsE2374 Guide for Acoustic Emissio
10、n System PerformanceVerification3. Terminology3.1 Definitions:3.1.1 Terminology related to acoustic emission is defined inTerminology E1316.3.2 Definitions of Terms Specific to This Standard:3.2.1 applied loada controlled or known force or stresswhich is applied to an object under examination for th
11、e purposeof analyzing the objects reaction (by means ofAE monitoring)to that stress.3.2.2 guard sensorssensors whose primary function is theelimination of extraneous noise based on arrival sequences.3.2.3 spatial discriminationthe process of using one ormore (guard and data) sensors to eliminate ext
12、raneous noisebased on arrival sequences.3.2.4 spatial filteringability of an AE system or analysisto disregard AE activity based on source location of the AEevent.4. Significance and Use4.1 The purpose of theAE examination is to analyze how anexamination object is withstanding the applied load, or i
13、f it issuffering from some latent damage. Consequently the emissionactivity must be evaluated in relation to the applied load.4.2 The applied load (on the examination object) mayinclude mechanical forces (tension, compression or torsional),1This guide is under the jurisdiction of ASTM Committee E07
14、on Nondestruc-tive Testing and is the direct responsibility of Subcommittee E07.04 on AcousticEmission Method.Current edition approved June 1, 2017. Published July 2017. Originally approvedin 1998. Last previous edition approved in 2012 as E1932 - 12. DOI: 10.1520/E1932-12R17.2For referenced ASTM st
15、andards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken,
16、 PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organizatio
17、n Technical Barriers to Trade (TBT) Committee.1Mon Apr 30 55 internal pressure and thermal gradients. It may be short to long,random or cyclic. The applied load may be controlled by theexaminer or may already exist as part of the process. In eithercase the applied load is measured along with the AE
18、activity.4.3 Possible applications include the determination of partintegrity, quality control assessment of production processes ona sampled or 100 % inspection basis, in-process examinationduring a period of applied load of a fabrication process (forexample, spot welding, bonding, soldering, press
19、ing, etc.),proof-testing after fabrication, monitoring a “region of inter-est” (or concern) of a structure (for example, bridge joint orrepair, vessel, pipe), and reexamination after intervals ofservice.5. Procedure5.1 Preliminary Information:5.1.1 Before examination, the following information, wher
20、erelevant, should be obtained by the AE examiner:5.1.1.1 Type of object to be examined, together with layoutdrawings or sketches.5.1.1.2 Material specifications (including details of heattreatment where possible).5.1.1.3 Proposed or existing applied load specification to-gether with a layout or sket
21、ch of the pressure/stress applicationsystem.5.1.1.4 Information regarding the measuring or recording ofthe applied load must also be obtained in order to determine thecompatibility with the AE equipment.5.1.1.5 Potential sources of background noise and the iso-lating mechanisms applied thereto.5.1.1
22、.6 Previous history, including the maximum appliedload to which the object or system has been subjected.5.1.1.7 Where possible, locations of known discontinuitiesand the general results of earlier AE or other NDE examina-tions.5.1.1.8 Results of earlier examinations on similar objects.5.1.2 Before e
23、xamination, the AE examiner should considerthe following information. Some details need to be coordinatedwith the on-site management or responsible personnel:5.1.2.1 The Type of AE Equipment to be UsedConsiderations should include the number of channels, thefrequency range of the instruments filters
24、, the real-time dataprocessing rates for the type of application, its location/guard/spatial filtering capabilities, the type of data being collected(for example, RMS, ASL, AE feature based or waveformbased) and the compatibility of the system to monitor andrecord the applied load during the AE exam
25、ination. Theseitems must be able to perform at the anticipated levels ofperformance expected during the examination. In addition,consideration should be given to the data analysis, display andreplay capabilities of the equipment to assure its ability toprocess the stored data in a way needed to arri
26、ve at asatisfactory conclusion and examination result.5.1.2.2 Application of LoadConsideration should be givento the application of the load in relation to the integrity of theexamination object and achieving a successful AE examinationresult. In cases where the applied load is part of the processbe
27、ing monitored, a suitable time forAE monitoring needs to bedetermined where process noise is low and applied load (forAE examination purposes) maximum. Sometimes (if needed)the applied loading can be altered to achieve this withoutcompromising the process (for example, inserting a short loadhold at
28、maximum load).(1) In cases where the applied load is controlled with theexamination, then consideration should be given to design theloading schedule to appropriately stress the examination objectin order to excite “latent flaws” without over-stressing ordamaging the object. In addition, the loading
29、 schedule shouldbe designed to provide best insight into the integrity of the part(for example, implementing a load schedule to evaluate the“Kaiser effect”).5.1.2.3 Sensor TypesConsiderations that should guide theuser into proper selection include the sensors frequency range,size (including sensor h
30、eight, diameter and weight), maximumor minimum temperature specification, the sensors sensitivityand frequency response, and acoustic impedance matching ofthe sensor and part.5.1.2.4 Location of Sensors and Placement StrategyConsiderations need to be given to the number of sensorsrequired for the ex
31、amination, their placement strategy andlocation on the part to be monitored.(1) In cases where background noise can be controlled ordoes not exist, then a single sensor near the expected source ofthe AE is sufficient.(2) In cases where there are a limited number of back-ground noise sources (such as
32、 the grips in a tension test), asingle AE data sensor near the expected source of AE and theuse of a guard sensor near each background source willeffectively block noises that emanate from a region closer tothe guard sensors than to the AE data sensor. Alternatively, agroup of two or more sensors ca
33、n be strategically placed toperform spatial discrimination of background noise and allowprocessing of AE events.(3) In cases where extraneous noise cannot be controlledand could be emanating from any or all directions, a multiple-sensor location strategy (such as linear or planar location)should be
34、considered. In this situation, enough sensors shouldbe specified to allow for an accurate source location, andmeans should be available to allow for the application ofspatial filtering and/or spatial discrimination so that only dataemanating from the region of interest is processed as relevantAE dat
35、a.5.1.2.5 Data to be RecordedThe AE examiner shouldknow in advance the data and information to be recorded andhave all the necessary equipment, hardware, accessories andsoftware to acquire, store, and process this information. Otherthan the equipment for AE monitoring, appropriate sensors anddevices
36、 are required for measuring and recording the appliedload and other load or condition related parametric data.Details of any interfaces may need to be coordinated with theexamination site management and personnel.E1932 12 (2017)2Mon Apr 30 55 5.1.2.6 Applicability and possible limitations of the met
37、hodfor the particular examination.5.1.2.7 Any preconditions necessary for conducting the AEexamination such as surface preparation or limitation ofpressurization rate needs to be coordinated with theexamination-site management or responsible personnel.5.2 Sensor InstallationThe methods and procedure
38、s usedin mounting AE sensors can have significant effects upon theperformance of those sensors. Optimum and reproducibledetection of AE requires both appropriate sensor-mountingfixtures and consistent sensor-mounting procedures. Refer toGuide E650.5.3 Calibration and Verification:5.3.1 Annual calibr
39、ation and verification of pressuretransducer, AE sensors, preamplifiers (if applicable), signalprocessor (particularly the signal processor time reference),and AE electronic simulator (waveform generator) should beperformed. Equipment should be adjusted so that it conformsto the equipment manufactur
40、ers specifications. Instrumentsused for calibrations must have current accuracy certificationthat is traceable to the National Institute for Standards andTechnology (NIST).5.3.2 Routine electronic evaluations should be performedany time there is concern about signal processor performance.An AE elect
41、ronic simulator (waveform generator) should beused in making evaluations. Each signal processor channelmust respond with peak amplitude reading within 62 dBV ofthe electronic waveform generator output. Guide E750 de-scribes other measurements for characterizing AE equipment.5.3.3 A system performanc
42、e verification should be con-ducted immediately before, and immediately after, each AEexamination. In addition, a system performance verificationcan be conducted during the examination if there is anysuspicion that the system performance may have changed. Aperformance check uses a mechanical device
43、to induce stresswaves into the examination object at a specified distance fromeach sensor (see Guide E2374). Induced stress waves stimulatea sensor in a manner similar to an acoustic emission. Perfor-mance checks verify performance of the entire system (includ-ing couplant).5.3.3.1 The preferred tec
44、hnique for conducting a perfor-mance check is a pencil lead break. Lead should be broken onthe examination object surface at a prescribed distance fromthe sensor (see 4.3.3 in Guide E976). In establishing the detailsof the lead break technique, care should be taken to avoidsaturating the electronics
45、.5.4 Examination:5.4.1 Pre-Examination RequirementsBefore the AEexamination, the following requirements should be completed.5.4.1.1 Visually examine the examination object, the acous-tic sensors and other instrumentation, to verify that the equip-ment is securely mounted and isolated from controllab
46、lesources of acoustic and electrical noise.5.4.1.2 Review the examination object to identify all poten-tial sources of background noise such as rubbing surfaces(friction), pump or other vibration, valve stroking, personnelmovement, fluid flow and turbulence. Evaluate backgroundnoise by monitoring th
47、e AE for a short period without theapplied load or under slight loading conditions (if possible).Identified sources may require acoustic isolation or control, sothat they will not mask relevant acoustic emission sourceswithin the object being examined.5.4.1.3 Test spatial filtering, or other applied
48、 discriminationfacilities, to prove its/their capability to reject extraneousburst-type noise.5.4.2 Collection of AE Data:5.4.2.1 Begin monitoring and recordingAE data and subjectthe examination object to the applied load.5.4.2.2 During AE examination, whenever circumstancesallow, the noise at each
49、sensor should be monitored periodi-cally to ensure that background noise remains acceptable forcontinued AE examination. The magnitude of the noise, thetimes of any specific noise incidents and the effect of the noiseon the AE examination, shall be recorded.5.4.2.3 The applied load or other parameters, or both,should be monitored and recorded to the extent necessary toallow correlation with the AE data.5.4.2.4 Acoustic emission data should be collected continu-ously during load applications as well as during holds andunloading.5.5 Data AnalysisThe AE signal