ASTM D6604-00(2017) Standard Practice for Glass Transition Temperatures of Hydrocarbon Resins by Differential Scanning Calorimetry.pdf

上传人:赵齐羽 文档编号:286958 上传时间:2019-07-10 格式:PDF 页数:4 大小:104.38KB
下载 相关 举报
ASTM D6604-00(2017) Standard Practice for Glass Transition Temperatures of Hydrocarbon Resins by Differential Scanning Calorimetry.pdf_第1页
第1页 / 共4页
ASTM D6604-00(2017) Standard Practice for Glass Transition Temperatures of Hydrocarbon Resins by Differential Scanning Calorimetry.pdf_第2页
第2页 / 共4页
ASTM D6604-00(2017) Standard Practice for Glass Transition Temperatures of Hydrocarbon Resins by Differential Scanning Calorimetry.pdf_第3页
第3页 / 共4页
ASTM D6604-00(2017) Standard Practice for Glass Transition Temperatures of Hydrocarbon Resins by Differential Scanning Calorimetry.pdf_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: D6604 00 (Reapproved 2017)Standard Practice forGlass Transition Temperatures of Hydrocarbon Resins byDifferential Scanning Calorimetry1This standard is issued under the fixed designation D6604; the number immediately following the designation indicates the year oforiginal adoption or, i

2、n the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice covers determination of glass transitiontemperatures of hydrocarbon

3、(HC) resins by differential scan-ning calorimetry (DSC).1.2 This practice is applicable to HC resins as defined inTerminology D6640. The normal operating temperature rangeis from the cryogenic region to approximately 180C. Thetemperature range can be extended.1.3 The values stated in SI units are to

4、 be regarded asstandard. No other units of measurement are included in thisstandard.1.4 Further discussion of glass transition can be found inTest Method D3418, and Test Method E1356.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is there

5、sponsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accor-dance with internationally recognized principles on standard-

6、ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2D3418 Test Method for Transition Temperatures and

7、En-thalpies of Fusion and Crystallization of Polymers byDifferential Scanning CalorimetryD6640 Practice for Collection and Handling of Soils Ob-tained in Core Barrel Samplers for Environmental Inves-tigationsE473 Terminology Relating to Thermal Analysis and Rhe-ologyE1356 Test Method for Assignment

8、of the Glass TransitionTemperatures by Differential Scanning Calorimetry3. Terminology3.1 Definitions:3.1.1 differential scanning calorimetry (DSC), nA tech-nique in which the difference in energy inputs into a substanceand a reference material is measured as a function oftemperature, while the subs

9、tance and reference material aresubjected to a controlled temperature program.3.1.1.1 DiscussionThe record is the DSC curve. Twomodes, power-compensation DSC and heat-flux DSC, can bedistinguished, depending on the method of measurement used.3.2 For other definitions of terms relating to thermalanal

10、ysis, see Terminology E473.4. Summary of Practice4.1 This practice consists of heating or cooling the testmaterial at a controlled rate, in a controlled atmosphere, andcontinuously monitoring with a suitable sensing device, thedifference in heat input between a reference material and a testmaterial

11、due to energy changes in the material. Absorption orrelease of energy marks a transition in the specimen resultingin a corresponding baseline shift in the heating or coolingcurve.5. Significance and Use5.1 Thermal analysis provides a rapid method for determin-ing transition temperatures in HC resins

12、 that possess them.5.2 This practice is useful for both quality assurance andresearch.6. Apparatus6.1 Differential Scanning CalorimeterAn instrument ca-pable of heating or cooling at rates up to 20 6 1C/min andautomatically recording the difference in input between thesample and a reference material

13、 to the required sensitivity andprecision.1This practice is under the jurisdiction of ASTM Committee D01 on Paint andRelated Coatings, Materials, and Applications and is the direct responsibility ofSubcommittee D01.34 on Pine Chemicals and Hydrocarbon Resins.Current edition approved Dec. 1, 2017. Pu

14、blished December 2017. Originallyapproved in 2000. Last previous edition approved in 2013 as D6604 00 (2013).DOI: 10.1520/D6604-00R17.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume info

15、rmation, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardizat

16、ion established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.16.2 Sample Tubes or PansBorosilicate glass tubes areused for certain applications and aluminum o

17、r other metal pansof high thermal conductivity for other applications.6.3 Reference MaterialGlass beads, indium, alumina, sili-con carbide, or mercury in a hermetically sealed sample pan, ora material known to be unaffected by repeated heating andcooling and free from interfering transitions may be

18、used. Thethermal diffusivity should be as close as possible to that of thesample.6.4 Recording Charts or SoftwareTemperature recordingapparatus with suitable graduations for measurement of eithertemperature differential or energy differential versus tempera-ture or time.7. Reagents7.1 NitrogenInert

19、gas for blanketing sample during test-ing.7.2 Indium, (99.999 + % purity).7.3 Mercury, (99.996 + % purity).7.4 Reagent Grade Benzoic Acid.8. Calibration8.1 Using the same heating rate to be used for samples,calibrate the temperature scale of the apparatus with appropri-ate standard reference materia

20、ls covering the temperature rangeof interest. For many commercial resins, the following sub-stances cover this range:Standards Melting Point, CBenzoic acid 122.4Indium 156.6 0.4Mercury 38.9 0.49. Sample Preparation9.1 Powdered or Granular SamplesAvoid grinding ifpreliminary thermal cycle is not perf

21、ormed. (Grinding orsimilar techniques for size reduction often introduce thermaleffects because of friction or orientation, or both, and therebychange the thermal history of the sample.)10. Procedure10.1 Use a sample weight appropriate for the material to betested and the instrument used. In most ca

22、ses, 10 to 20-mgsample weight is satisfactory.NOTE 1Since milligram quantities of sample are used, it is essentialto ensure that samples are homogenous and representative. Also, particlesize has an effect on the detected transition temperatures. Thereforeparticle size should be fairly consistent fro

23、m sample to sample.10.2 Perform and record a preliminary thermal cycle up to atemperature high enough to erase previous thermal and strainhistory, at a heating rate of 10C/min.NOTE 2Use an inert gas purge such as nitrogen since the sample mayreact with oxygen during the temperature cycle causing an

24、incorrecttransition.NOTE 3An increase or decrease in heating rate from those specifiedmay alter the results.10.3 Hold this temperature for 10 min.10.4 Quench cool to 50C below the expected transitiontemperature of interest.10.5 Hold this temperature for 10 min.10.6 Repeat heating on the same sample

25、at a rate of10C/min. and record the heating curve until all desiredtransitions have been completed.11. Calculation11.1 Measure corrected temperatures Tf, TeT, Tm(see Fig. 1)as follows:where:Tf= extrapolated onset temperature C,Te= extrapolated end temperature C, andTm= midpoint temperature C.NOTE 4A

26、 new baseline will probably be established after thetransition. Tgcan be defined as any of these measured values.NOTE 5In Fig. 1 the downward direction of the Heat Flow axisindicates an exotherm.12. Report12.1 Report the following information:12.1.1 Complete identification and description of the mat

27、e-rial tested,12.1.2 Description of the instrument used for the test,12.1.3 Statement of the dimensions, geometry, and materialsof the sample holder; and the average rate of linear temperaturerange,12.1.4 Description of the temperature calibration procedure,and12.1.5 State the type of Tgvalues repor

28、ted.13. Keywords13.1 DSC; glass transition temperatures; hydrocarbon res-ins; TgD6604 00 (2017)2FIG. 1 Glass Transition of a Typical Hydrocarbon ResinD6604 00 (2017)3ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin thi

29、s standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be

30、 reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresp

31、onsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, We

32、st Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http:/ 00 (2017)4

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1