BS PD IEC TR 60601-4-1-2017 Medical electrical equipment Guidance and interpretation Medical electrical equipment and medical electrical systems employing a degree of auto.pdf

上传人:tireattitude366 文档编号:397652 上传时间:2018-10-18 格式:PDF 页数:84 大小:3.99MB
下载 相关 举报
BS PD IEC TR 60601-4-1-2017 Medical electrical equipment Guidance and interpretation Medical electrical equipment and medical electrical systems employing a degree of auto.pdf_第1页
第1页 / 共84页
BS PD IEC TR 60601-4-1-2017 Medical electrical equipment Guidance and interpretation Medical electrical equipment and medical electrical systems employing a degree of auto.pdf_第2页
第2页 / 共84页
BS PD IEC TR 60601-4-1-2017 Medical electrical equipment Guidance and interpretation Medical electrical equipment and medical electrical systems employing a degree of auto.pdf_第3页
第3页 / 共84页
BS PD IEC TR 60601-4-1-2017 Medical electrical equipment Guidance and interpretation Medical electrical equipment and medical electrical systems employing a degree of auto.pdf_第4页
第4页 / 共84页
BS PD IEC TR 60601-4-1-2017 Medical electrical equipment Guidance and interpretation Medical electrical equipment and medical electrical systems employing a degree of auto.pdf_第5页
第5页 / 共84页
亲,该文档总共84页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Medical electrical equipment Part 4-1: Guidance and interpretation Medical electrical equipment and medical electrical systems employing a degree of autonomy PD IEC/TR 60601-4-1:2017 BSI Standards Publication WB11885_BSI_StandardCovs_2013_AW.indd 1 15/05/2013 15:06IEC TR 60601-4-1 Edition 1.0 2017-0

2、5 TECHNICAL REPORT Medical electrical equipment Part 4-1: Guidance and interpretation Medical electrical equipment and medical electrical systems employing a degree of autonomy INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 11.040.01 ISBN 978-2-8322-4329-9 Registered trademark of the International El

3、ectrotechnical Commission Warning! Make sure that you obtained this publication from an authorized distributor. colour inside National foreword This Published Document is the UK implementation of IEC/TR 60601-4-1:2017. The UK participation in its preparation was entrusted to Technical Committee CH/6

4、2/1, Common aspects of Electrical Equipment used in Medical Practice. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct appl

5、ication. The British Standards Institution 2017 Published by BSI Standards Limited 2017 ISBN 978 0 580 84736 3 ICS 11.040.01 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy

6、Committee on 30 June 2017. Amendments/corrigenda issued since publication Date Text affected PUBLISHED DOCUMENT PD IEC/TR 6060141:2017 IEC TR 60601-4-1 Edition 1.0 2017-05 TECHNICAL REPORT Medical electrical equipment Part 4-1: Guidance and interpretation Medical electrical equipment and medical ele

7、ctrical systems employing a degree of autonomy INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 11.040.01 ISBN 978-2-8322-4329-9 Registered trademark of the International Electrotechnical Commission Warning! Make sure that you obtained this publication from an authorized distributor. colour inside PD I

8、EC/TR 6060141:2017 2 IEC TR 60601-4-1:2017 IEC 2017 CONTENTS FOREWORD . 5 INTRODUCTION . 7 1 Scope 9 2 Normative references 9 3 Terms and definitions 10 4 DEGREE OF AUTONOMY (DOA) . 17 4.1 Introduction to DEGREE OF AUTONOMY . 17 4.2 Methodology to determine DEGREE OF AUTONOMY . 17 4.3 Relationship b

9、etween DOA and RISK 18 5 PROCESS STANDARDS supporting DOA 18 5.1 General . 18 5.2 RISK MANAGEMENT PROCESS . 19 5.2.1 Defining INTENDED USE . 19 5.2.2 INTENDED USE and characteristics related to SAFETY . 19 5.3 RISK CONTROL 20 5.3.1 General . 20 5.3.2 RISK CONTROL hierarchy . 21 5.4 USABILITY enginee

10、ring considerations for MEE or MES having a higher DOA . 22 5.4.1 General . 22 5.4.2 OPERATOR situation awareness 22 5.4.3 OPERATOR reaction time . 23 5.4.4 OPERATOR sensory input and response 23 5.4.5 Detectability by OPERATOR of malfunction or errors of MEE or MES with a higher DOA . 23 5.5 PROGRA

11、MMABLE ELECTRICAL MEDICAL SYSTEMS (PEMS) and software development LIFE CYCLE (IEC 62304) 23 5.6 Application of RISK MANAGEMENT for IT-networks incorporating medical devices . 24 6 BASIC SAFETY and ESSENTIAL PERFORMANCE related to DOA . 25 6.1 GENERAL . 25 6.2 BASIC SAFETY related to DOA 25 6.3 ESSEN

12、TIAL PERFORMANCE related to DOA . 26 Annex A (informative) Rationale for defining the AUTOMATIC, AUTONOMY and DOA framework and the distinction between a MEDICAL ROBOT and other MEE or MES 28 A.1 General . 28 A.2 Existing definitions and limitations 28 A.3 New approaches . 29 A.4 Definition of MONIT

13、OR GENERATE SELECT EXECUTE 30 A.5 Approaches to define ROBOT and MEDICAL ROBOT . 31 A.6 Conclusions 31 Annex B (informative) DOA and relevant terms used in MEE standards 32 B.1 General . 32 B.2 Procedure . 32 B.3 Results . 32 B.3.1 Summary . 32 B.3.2 Tables . 33 Annex C (informative) Exemplar method

14、s for classifying DEGREE OF AUTONOMY 42 PD IEC/TR 6060141:2017 2 IEC TR 60601-4-1:2017 IEC 2017 CONTENTS FOREWORD . 5 INTRODUCTION . 7 1 Scope 9 2 Normative references 9 3 Terms and definitions 10 4 DEGREE OF AUTONOMY (DOA) . 17 4.1 Introduction to DEGREE OF AUTONOMY . 17 4.2 Methodology to determin

15、e DEGREE OF AUTONOMY . 17 4.3 Relationship between DOA and RISK 18 5 PROCESS STANDARDS supporting DOA 18 5.1 General . 18 5.2 RISK MANAGEMENT PROCESS . 19 5.2.1 Defining INTENDED USE . 19 5.2.2 INTENDED USE and characteristics related to SAFETY . 19 5.3 RISK CONTROL 20 5.3.1 General . 20 5.3.2 RISK

16、CONTROL hierarchy . 21 5.4 USABILITY engineering considerations for MEE or MES having a higher DOA . 22 5.4.1 General . 22 5.4.2 OPERATOR situation awareness 22 5.4.3 OPERATOR reaction time . 23 5.4.4 OPERATOR sensory input and response 23 5.4.5 Detectability by OPERATOR of malfunction or errors of

17、MEE or MES with a higher DOA . 23 5.5 PROGRAMMABLE ELECTRICAL MEDICAL SYSTEMS (PEMS) and software development LIFE CYCLE (IEC 62304) 23 5.6 Application of RISK MANAGEMENT for IT-networks incorporating medical devices . 24 6 BASIC SAFETY and ESSENTIAL PERFORMANCE related to DOA . 25 6.1 GENERAL . 25

18、6.2 BASIC SAFETY related to DOA 25 6.3 ESSENTIAL PERFORMANCE related to DOA . 26 Annex A (informative) Rationale for defining the AUTOMATIC, AUTONOMY and DOA framework and the distinction between a MEDICAL ROBOT and other MEE or MES 28 A.1 General . 28 A.2 Existing definitions and limitations 28 A.3

19、 New approaches . 29 A.4 Definition of MONITOR GENERATE SELECT EXECUTE 30 A.5 Approaches to define ROBOT and MEDICAL ROBOT . 31 A.6 Conclusions 31 Annex B (informative) DOA and relevant terms used in MEE standards 32 B.1 General . 32 B.2 Procedure . 32 B.3 Results . 32 B.3.1 Summary . 32 B.3.2 Table

20、s . 33 Annex C (informative) Exemplar methods for classifying DEGREE OF AUTONOMY 42 IEC TR 60601-4-1:2017 IEC 2017 3 C.1 Descriptive method . 42 C.2 Binary method . 43 C.3 Weighted method 44 Annex D (informative) Examples of introducing DOA to MEE/MES . 50 D.1 General . 50 D.2 Example 1 Lower extrem

21、ity exoskeleton . 50 D.2.1 Description of the medical procedures . 50 D.2.2 DOA classification method 50 D.2.3 Effect of DOA on the RISK MANAGEMENT PROCESS . 52 D.3 Example 2 Orthopaedic MEE/MES/MEDICAL ROBOT for reshaping bone 54 D.3.1 Description of the medical procedures . 54 D.3.2 DOA classifica

22、tion method 54 D.3.3 Effect of DOA on the RISK MANAGEMENT PROCESS . 55 D.3.4 Summary and conclusions . 55 D.4 Example 3 Instrument exchange on robotically-assisted surgical equipment 55 D.4.1 Description of the medical procedures . 55 D.4.2 DOA classification method 56 D.4.3 Effect of DOA on the RIS

23、K MANAGEMENT PROCESS . 56 D.4.4 Summary and conclusions . 57 D.5 Example 4 Masterslave robotically-assisted surgical equipment . 57 D.5.1 Description of the medical procedures . 57 D.5.2 DOA classification method 58 D.5.3 Effect of DOA on RISK MANAGEMENT PROCESS . 58 D.5.4 Summary and conclusions .

24、58 D.6 Example 5 Image-guided radiotherapy equipment 58 D.6.1 Description of the medical procedures . 58 D.6.2 DOA classification method 59 D.6.3 RISK ANALYSIS for each level of DOA . 61 D.6.4 Effect of DOA on the RISK MANAGEMENT PROCESS . 61 D.6.5 Summary and conclusions . 61 D.7 Example 6 Automate

25、d external defibrillator (AED) 62 D.7.1 Description of the medical procedures . 62 D.7.2 DOA classification method 63 D.7.3 Effect of DOA on the RISK MANAGEMENT PROCESS . 64 D.7.4 Summary and conclusions . 64 Annex E (informative) PATIENT SAFETY characteristics to be taken into account during RISK M

26、ANAGEMENT for MEE or MES employing DOA 65 E.1 Types of PATIENTS . 65 E.2 Additional attention for child (PATIENT) SAFETY . 65 E.3 PATIENT abilities and variability of physiological signals 66 E.3.1 ISO/IEC Guide 71 66 E.3.2 Changing need and abilities of PATIENTS 66 E.3.3 PATIENTS sensory abilities

27、. 66 E.3.4 PATIENTS PHYSICAL ABILITIES 67 E.3.5 PATIENTS COGNITIVE ABILITIES . 67 E.3.6 PATIENT ALLERGIES . 67 ANNEX F (informative) PHYSIOLOGIC CLOSED-LOOP CONTROL SYSTEM AND DOA . 69 Annex G (informative) Examples of distributed ESSENTIAL PERFORMANCE 72 Bibliography 75 PD IEC/TR 6060141:2017 4 IEC

28、 TR 60601-4-1:2017 IEC 2017 Figure 1 Basic model of interoperability of MEE in an MES (Order of execution: 1 to 3) 25 Figure A.1 ALFUS approach applied to MEE or MES applications . 30 Figure C.1 Application of weighted method to the “MONITOR” TASK 45 Figure C.2 Application of weighted method to “GEN

29、ERATE OPTIONS” 46 Figure C.3 Application of weighted method to “SELECT OPTION” TASK 47 Figure C.4 Application of weighted method to the “EXECUTE” TASK 48 Figure F.1 Functional diagram indicating typical components of a PHYSIOLOGIC CLOSED-LOOP CONTROL SYSTEM (PCLCS) utilizing a PCLC 69 Figure F.2 Exa

30、mples of introducing DOA into the MONITORING TASK via PCLCS . 70 Figure F.3 Examples of introducing DOA into the GENERATING TASK via PCLCS . 70 Figure F.4 Examples of introducing DOA into the SELECTION TASK via PCLCS 70 Figure F.5 Examples of introducing DOA into the EXECUTION TASK via PCLCS . 71 Ta

31、ble 1 Examples of ESSENTIAL PERFORMANCE of MEE or MES with a DOA . 27 Table B.1 List of terms that indicate the use of AUTONOMY 33 Table B.2 List of reviewed standards sorted by standard number (1 of 4) 34 Table B.3 List of identified inconsistencies in reviewed standards (1 of 2) 40 Table C.1 Descr

32、iptive classification of DOA . 43 Table C.2 Binary classification of DOA 44 Table D.1 Example 1 Effect of DOA on the RISK MANAGEMENT PROCESS . 52 Table D.2 Example 1 Physical and cognitive capability of individual and CLINICAL FUNCTION needed 52 Table D.3 Example 1 Sub-function TASK example 53 Table

33、 D.4 Example 2 Effect of DOA on the RISK MANAGEMENT PROCESS . 55 Table D.5 Example 3 Comparison of instrument exchange design implementations 57 Table D.6 Example 3 Effect of DOA on the RISK MANAGEMENT PROCESS . 57 Table D.7 Example 4 Effect of DOA on the RISK MANAGEMENT PROCESS . 58 Table D.8 Examp

34、le 5 Descriptive classification of DOA for IGRT MEE . 60 Table D.9 Example 5 Binary classification of DOA for IGRT MEE . 60 Table D.10 Example 5 Effect of DOA on the RISK MANAGEMENT PROCESS . 62 Table D.11 Example 6 Descriptive method classification of DOA in external defibrillators 63 Table D.12 Ex

35、ample 6 Effect of DOA on the RISK MANAGEMENT PROCESS . 64 Table G.1 Examples of distributed ESSENTIAL PERFORMANCE (1 of 3) . 72 PD IEC/TR 6060141:2017 4 IEC TR 60601-4-1:2017 IEC 2017 Figure 1 Basic model of interoperability of MEE in an MES (Order of execution: 1 to 3) 25 Figure A.1 ALFUS approach

36、applied to MEE or MES applications . 30 Figure C.1 Application of weighted method to the “MONITOR” TASK 45 Figure C.2 Application of weighted method to “GENERATE OPTIONS” 46 Figure C.3 Application of weighted method to “SELECT OPTION” TASK 47 Figure C.4 Application of weighted method to the “EXECUTE

37、” TASK 48 Figure F.1 Functional diagram indicating typical components of a PHYSIOLOGIC CLOSED-LOOP CONTROL SYSTEM (PCLCS) utilizing a PCLC 69 Figure F.2 Examples of introducing DOA into the MONITORING TASK via PCLCS . 70 Figure F.3 Examples of introducing DOA into the GENERATING TASK via PCLCS . 70

38、Figure F.4 Examples of introducing DOA into the SELECTION TASK via PCLCS 70 Figure F.5 Examples of introducing DOA into the EXECUTION TASK via PCLCS . 71 Table 1 Examples of ESSENTIAL PERFORMANCE of MEE or MES with a DOA . 27 Table B.1 List of terms that indicate the use of AUTONOMY 33 Table B.2 Lis

39、t of reviewed standards sorted by standard number (1 of 4) 34 Table B.3 List of identified inconsistencies in reviewed standards (1 of 2) 40 Table C.1 Descriptive classification of DOA . 43 Table C.2 Binary classification of DOA 44 Table D.1 Example 1 Effect of DOA on the RISK MANAGEMENT PROCESS . 5

40、2 Table D.2 Example 1 Physical and cognitive capability of individual and CLINICAL FUNCTION needed 52 Table D.3 Example 1 Sub-function TASK example 53 Table D.4 Example 2 Effect of DOA on the RISK MANAGEMENT PROCESS . 55 Table D.5 Example 3 Comparison of instrument exchange design implementations 57

41、 Table D.6 Example 3 Effect of DOA on the RISK MANAGEMENT PROCESS . 57 Table D.7 Example 4 Effect of DOA on the RISK MANAGEMENT PROCESS . 58 Table D.8 Example 5 Descriptive classification of DOA for IGRT MEE . 60 Table D.9 Example 5 Binary classification of DOA for IGRT MEE . 60 Table D.10 Example 5

42、 Effect of DOA on the RISK MANAGEMENT PROCESS . 62 Table D.11 Example 6 Descriptive method classification of DOA in external defibrillators 63 Table D.12 Example 6 Effect of DOA on the RISK MANAGEMENT PROCESS . 64 Table G.1 Examples of distributed ESSENTIAL PERFORMANCE (1 of 3) . 72 IEC TR 60601-4-1

43、:2017 IEC 2017 5 INTERNATIONAL ELECTROTECHNICAL COMMISSION _ MEDICAL ELECTRICAL EQUIPMENT Part 4-1: Guidance and interpretation Medical electrical equipment and medical electrical systems employing a degree of autonomy FOREWORD 1) The International Electrotechnical Commission (IEC) is a worldwide or

44、ganization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activitie

45、s, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject deal

46、t with may participate in this preparatory work. International, governmental and non- governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined

47、 by agreement between the two organizations. 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

48、 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they

49、are used or for any misinterpretation by any end user. 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding

展开阅读全文
相关资源
  • BS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdfBS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdf
  • BS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdfBS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdf
  • BS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdfBS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdf
  • BS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdfBS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdf
  • BS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdfBS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdf
  • BS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdfBS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdf
  • BS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdfBS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdf
  • BS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdfBS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdf
  • BS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdfBS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdf
  • BS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdfBS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > BS

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1