API PUBL 4775-2009 Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings Evaluation of Low Strength Sources Associated with Dissolved Gasoline Plum.pdf

上传人:figureissue185 文档编号:399896 上传时间:2018-10-23 格式:PDF 页数:64 大小:917.31KB
下载 相关 举报
API PUBL 4775-2009 Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings Evaluation of Low Strength Sources Associated with Dissolved Gasoline Plum.pdf_第1页
第1页 / 共64页
API PUBL 4775-2009 Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings Evaluation of Low Strength Sources Associated with Dissolved Gasoline Plum.pdf_第2页
第2页 / 共64页
API PUBL 4775-2009 Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings Evaluation of Low Strength Sources Associated with Dissolved Gasoline Plum.pdf_第3页
第3页 / 共64页
API PUBL 4775-2009 Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings Evaluation of Low Strength Sources Associated with Dissolved Gasoline Plum.pdf_第4页
第4页 / 共64页
API PUBL 4775-2009 Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings Evaluation of Low Strength Sources Associated with Dissolved Gasoline Plum.pdf_第5页
第5页 / 共64页
亲,该文档总共64页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into BuildingsEvaluation of Low Strength Sources Associated with Dissolved Gasoline PlumesAPI PUBLICATION 4775APRIL 2009Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into BuildingsEvaluation of Low Stre

2、ngth SourcesAssociated with Dissolved Gasoline PlumesRegulatory and Scientific Affairs DepartmentAPI PUBLICATION 4775APRIL 2009PREPARED UNDER CONTRACT BY:LILIAN D. V. ABREU, ROBERT ETTINGER, AND TODD MCALARYGEOSYNTEC CONSULTANTS, INC.Special NotesAPI publications necessarily address problems of a ge

3、neral nature. With respect to particular circumstances, local,state, and federal laws and regulations should be reviewed.Neither API nor any of APIs employees, subcontractors, consultants, committees, or other assignees make anywarranty or representation, either express or implied, with respect to t

4、he accuracy, completeness, or usefulness ofthe information contained herein, or assume any liability or responsibility for any use, or the results of such use, of anyinformation or process disclosed in this publication. Neither API nor any of APIs employees, subcontractors,consultants, or other assi

5、gnees represent that use of this publication would not infringe upon privately owned rights.API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure theaccuracy and reliability of the data contained in them; however, the Institute makes no repre

6、sentation, warranty, orguarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss ordamage resulting from its use or for the violation of any authorities having jurisdiction with which this publication mayconflict.API publications are publis

7、hed to facilitate the broad availability of proven, sound engineering and operatingpractices. These publications are not intended to obviate the need for applying sound engineering judgmentregarding when and where these publications should be utilized. The formulation and publication of API publicat

8、ionsis not intended in any way to inhibit anyone from using any other practices.Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standardis solely responsible for complying with all the applicable requirements of that standard. API does not repre

9、sent,warrant, or guarantee that such products do in fact conform to the applicable API standard.All rights reserved. No part of this work may be reproduced, translated, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without p

10、rior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.Copyright 2009 American Petroleum InstituteForewordNothing contained in any API publication is to be construed as granting any right, by implication or otherwise, f

11、or themanufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anythingcontained in the publication be construed as insuring anyone against liability for infringement of letters patent.Suggested revisions are invited and should be submitted to the Dire

12、ctor of Regulatory Analysis and Scientific Affairs,API, 1220 L Street, NW, Washington, D.C. 20005.ContentsPageAbstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Introduc

13、tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14、 . . . . . . . . . . . . . 23 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.1 Conditions Simulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2 Multi-Component Mixture Vapor Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.1 Effect of Source Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.2 Effect of First-Order Biodegradation Rate . . . . . . . . . . . . .

17、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.3 Effect of Source Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.4 Effect of Building Type . . . . . . . . . . . . . . . .

18、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.5 Results and Discussion for Multi-Component Gasoline Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Evaluation of Additional Parameters . . . . . . . . . . . . . .

19、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265.1 Effect of Soil Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265.2 Effect of Foundation Crack Location . . . .

20、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295.3 Effect of a High Moisture-Content Soil Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 Discussion . . . . . . . . . . . . . . . . .

21、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326.1 Development of a Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326.2 Preliminary Screening. .

22、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336.3 Site-Specific Assessments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 Conc

23、lusions and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24、. . . . 357.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25、 . . . . . . . . . . . . . . . . . . . 36Appendix A Predicted Soil Gas Pressure Field and Air Flow Rate into the Building . . . . . . . . . . . . . . . . . . . 38Appendix B Plots of Attenuation Factors as a Function of Source Concentration, Depth and First-order Biodegradation Rates for Basement Sce

26、narios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Appendix C Plots of Attenuation Factors as a Function of Source Concentration, Depth and First-order Biodegradation Rates for Slab-on-grade Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27、. . . . 49Figures1 Vertical cross section of sample model domain showing the grid refinement for basement scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Vertical cross section of sample model d

28、omain showing the grid refinement forslab-on-grade scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Effect of low vapor source concentration (Cvs) on soil gas concentration distribution and vapor intrus

29、ion attenuation factors () for basement foundation scenarios and hydrocarbon biodegradation rate = 0.79 h-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Effect of low vapor source concentration (Cvs) on soil gas concentration distribution and va

30、por intrusion attenuation factors () for slab-on-grade foundation scenarios and hydrocarbon biodegradation rate = 0.79 h-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10ContentsPage5 Influence of soil vapor source concentration and first-order biode

31、gradation rates () on vapor intrusion attenuation factors () for basement scenarios, homogeneous sand soil and source depth (D) of 5 m bgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Influence of soil vapor source concentration an

32、d first-order biodegradation rates () on vapor intrusion attenuation factors () for slab-on-grade scenarios, homogeneous sand soil and source depth (D) of 5 m bgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Effect of biodegradatio

33、n rate ( on soil gas concentration distribution and vapor intrusion attenuation factors () for low vapor source concentration (4 mg/L) located at 4 m bgs (2 m below a basement foundation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34、138 Effect of biodegradation rate ( on soil gas concentration distribution and vapor intrusion attenuation factors () for low vapor source concentration (4 mg/L) located at 4 m bgs(4 m below the slab-on-grade foundation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35、 . . . . . . . . . . 149 Effect of source depth on the soil gas concentration distribution and vapor intrusion attenuation factors () for basement scenarios with a low vapor source concentration of 1 mg/L and biodegradation rate = 0.79 h-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36、 . . . . . . . . . . . . . . . . 1510 Effect of source depth on the soil gas concentration distribution and vapor intrusion attenuation factors () for slab-on-grade scenarios with a low vapor source concentration of 1 mg/L and biodegradation rate = 0.79 h-1. . . . . . . . . . . . . . . . . . . . . .

37、 . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 Effect of source depth on the soil gas concentration distribution and vapor intrusion attenuation factors () for basement scenarios with a high vapor source concentration of 100 mg/L and biodegradation rate = 0.79 h-1. . . . . . . . . . . . .

38、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1712 Attenuation factors as a function of source depth below foundation and first-order biodegradation rate for basement scenarios with perimeter cracks and 10 mg/L vapor source concentration . . . . . . . 1813 Attenuation factors as a

39、function of source depth below foundation and first-order biodegradation rate for slab-on-grade scenarios with perimeter cracks and 10 mg/L vapor source concentration . . . . 1914 Effect of building type on soil gas concentration distribution for low vapor source concentration (4 mg/L) and biodegrad

40、ation rate = 0.79 h-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2015 Effect of building type on soil gas concentration distribution for high vapor source concentration(100 mg/L) and biodegradation rate = 0.79 h-1. . . . . . . . . . . . . . . . . .

41、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2116 Effect of multi-component source on soil gas distribution and oxygen consumption in the subsurface for dissolved groundwater source scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2317 Effect of mult

42、i-component source on soil gas distribution and oxygen consumption in thesubsurface for NAPL source scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2418 Normalized steady-state soil gas concentration distribution for oxygen and hyd

43、rocarbon with a vapor source concentration of 4 mg/L located at 5 m bgs (3 m below the foundation) . . . . . . . . 2719 Attenuation factors as a function of soil type and vapor source concentration for a source located at 5 m bgs (3 m below a basement foundation) . . . . . . . . . . . . . . . . . .

44、. . . . . . . . . . . . . . . 2820 Attenuation factors as a function of soil type and source depth below a basement foundation for a 10 mg/L source vapor concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2921 Effect of crack positioning (perimeter vs cen

45、ter of foundation) on attenuation factors as a function of vapor source concentration located 1 m below a basement foundation . . . . . . . . . . . . . . . . 3022 Effect of crack positioning (perimeter vs center of foundation) on attenuation factors as a function of vapor source concentration locate

46、d 3 m below a slab-on-grade foundation. . . . . . . . . . . . . 3023 Normalized steady-state soil gas concentration distribution for oxygen and hydrocarbon with a vapor source concentration of 1 mg/L located at 4 m bgs (2 m below a basement foundation) . . . . . 3124 Normalized steady-state soil gas

47、 concentration distribution for oxygen and hydrocarbon with a vapor source concentration of 10 mg/L located at 4 m bgs (2 m below a basement foundation) . . . . 32ContentsPageA1 Normalized steady-state disturbance pressure distribution for a homogeneous soil permeability field (Kg=10-11m2) surroundi

48、ng basement and slab-on-grade foundations with perimeter cracks and a lower boundary at depths of 3, 5 and 7 m bgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39A2 Plan view of the foundation crack distribution: a) perimeter crack; b) center-of-foundation crac

49、ks . . . 40A3 Normalized steady-state disturbance pressure distribution for a homogeneous soil permeabilityfield (Kg=10-11m2) surrounding basement foundations with cracks located on perimeter and on center of the foundation slab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41A4 Normalized steady-state disturbance pressure distribution for a homogeneous soil permeability field (Kg=10-11m2) below slab-on-grade foundations with cracks located on perimeter and on center of the foundation slab.

展开阅读全文
相关资源
  • API SALES OF NGL & LRG-2018 2016 Sales of Natural Gas Liquids and Liquefied Refinery Gas.pdfAPI SALES OF NGL & LRG-2018 2016 Sales of Natural Gas Liquids and Liquefied Refinery Gas.pdf
  • API MPMS 9 4-2018 Manual of Petroleum Measurement Standards Chapter 9 4-Continuous Density Measurement Under Dynamic (Flowing) Conditions (FIRST EDITION).pdfAPI MPMS 9 4-2018 Manual of Petroleum Measurement Standards Chapter 9 4-Continuous Density Measurement Under Dynamic (Flowing) Conditions (FIRST EDITION).pdf
  • API MPMS 9 3-2012 Manual of Petroleum Measurement Standards Chapter 9 3 Standard Test Method for Density Relative Density and API Gravity of Crude Petroleum and.pdfAPI MPMS 9 3-2012 Manual of Petroleum Measurement Standards Chapter 9 3 Standard Test Method for Density Relative Density and API Gravity of Crude Petroleum and.pdf
  • API MPMS 9 2-2012 Manual of Petroleum Measurement Standards Chapter 9 2 Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure H.pdfAPI MPMS 9 2-2012 Manual of Petroleum Measurement Standards Chapter 9 2 Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure H.pdf
  • API MPMS 9 1-2012 Manual of Petroleum Measurement Standards Chapter 9 1 Standard Test Method for Density Relative Density or API Gravity of Crude Petroleum and .pdfAPI MPMS 9 1-2012 Manual of Petroleum Measurement Standards Chapter 9 1 Standard Test Method for Density Relative Density or API Gravity of Crude Petroleum and .pdf
  • API MPMS 8 5-2015 Manual of Petroleum Measurement Standards Chapter 8 5 Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils Condensate.pdfAPI MPMS 8 5-2015 Manual of Petroleum Measurement Standards Chapter 8 5 Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils Condensate.pdf
  • API MPMS 8 5 SPANISH-2015 Manual of Petroleum Measurement Standards Chapter 8 5 - Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils .pdfAPI MPMS 8 5 SPANISH-2015 Manual of Petroleum Measurement Standards Chapter 8 5 - Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils .pdf
  • API MPMS 8 4-2017 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (FOURTH .pdfAPI MPMS 8 4-2017 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (FOURTH .pdf
  • API MPMS 8 4-2014 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (THIRD E.pdfAPI MPMS 8 4-2014 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (THIRD E.pdf
  • API MPMS 8 3-1995 Manual of Petroleum Measurement Standards Chapter 8 - Sampling Section 3 - Standard Practice for Mixing and Handling of Liquid Samples of Petr.pdfAPI MPMS 8 3-1995 Manual of Petroleum Measurement Standards Chapter 8 - Sampling Section 3 - Standard Practice for Mixing and Handling of Liquid Samples of Petr.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > API

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1