1、ANSI/ANS-56.8-2002containment system leakagetesting requirementsANSI/ANS-56.8-2002REAFFIRMED August 9, 2011 ANSI/ANS-56.8-2002 (R2011) This standard has been reviewed and reaffirmed with the recognition that it may reference other standards and documents that may have been superseded or withdrawn. T
2、he requirements of this document will be met by using the version of the standards and documents referenced herein. It is the responsibility of the user to review each of the references and to determine whether the use of the original references or more recent versions is appropriate for the facilit
3、y. Variations from the standards and documents referenced in this standard should be evaluated and documented. This standard does not necessarily reflect recent industry initiatives for risk informed decision-making or a graded approach to quality assurance. Users should consider the use of these in
4、dustry initiatives in the application of this standard. ANSI/ANS-56.8-2002American National StandardContainment System LeakageTesting RequirementsSecretariatAmerican Nuclear SocietyPrepared by theAmerican Nuclear SocietyStandards CommitteeWorking Group ANS-56.8Published by theAmerican Nuclear Societ
5、y555 North Kensington AvenueLa Grange Park, Illinois 60526 USAApproved November 27, 2002by theAmerican National Standards Institute, Inc.AmericanNationalStandardDesignation of this document as an American National Standard attests thatthe principles of openness and due process have been followed in
6、the approvalprocedure and that a consensus of those directly and materially affected bythe standard has been achieved.This standard was developed under procedures of the Standards Committee ofthe American Nuclear Society; these procedures are accredited by the Amer-ican National Standards Institute,
7、 Inc., as meeting the criteria for AmericanNational Standards. The consensus committee that approved the standardwas balanced to ensure that competent, concerned, and varied interests havehad an opportunity to participate.An American National Standard is intended to aid industry, consumers, gov-ernm
8、ental agencies, and general interest groups. Its use is entirely voluntary.The existence of an American National Standard, in and of itself, does notpreclude anyone from manufacturing, marketing, purchasing, or using prod-ucts, processes, or procedures not conforming to the standard.By publication o
9、f this standard, the American Nuclear Society does not insureanyone utilizing the standard against liability allegedly arising from or afterits use. The content of this standard reflects acceptable practice at the time ofits approval and publication. Changes, if any, occurring through developmentsin
10、 the state of the art, may be considered at the time that the standard issubjected to periodic review. It may be reaffirmed, revised, or withdrawn atany time in accordance with established procedures. Users of this standardare cautioned to determine the validity of copies in their possession and toe
11、stablish that they are of the latest issue.The American Nuclear Society accepts no responsibility for interpretations ofthis standard made by any individual or by any ad hoc group of individuals.Requests for interpretation should be sent to the Standards Department atSociety Headquarters. Action wil
12、l be taken to provide appropriate response inaccordance with established procedures that ensure consensus on theinterpretation.Comments on this standard are encouraged and should be sent to SocietyHeadquarters.Published byAmerican Nuclear Society555 North Kensington AvenueLa Grange Park, Illinois 60
13、526 USACopyright 2003 by American Nuclear Society. All rights reserved.Any part of this standard may be quoted. Credit lines should read “Extracted fromAmerican National Standard ANSI0ANS-56.8-2002 with permission of the publisher,the American Nuclear Society.” Reproduction prohibited under copyrigh
14、t conventionunless written permission is granted by the American Nuclear Society.Printed in the United States of AmericaForewordThis foreword is not part of American National Standard for Containment System Leakage TestingRequirements, ANSI0ANS-56.8-2002.!This standard provides a basis for determini
15、ng leakage rates through the primary reactorcontainment systems of light-water-cooled nuclear power plants. This revision is intendedfor use with Option B of 10 CFR 50, Appendix J, and is not suitable for use with Option Aof Appendix J.The leakage rate tests performed on the primary reactor containm
16、ent system simulatesome of the conditions e.g., penetrations vented, flooded, or in operation! that existduring a design-basis accident. The test methodology and the associated requirements forboth whole containment integrated! and individual pathway local! leakage rate testingare contained in this
17、document.The appendices contain Type A and verification test methods, formula derivations, con-tainment atmosphere stabilization criteria, and test termination criteria.The regulatory requirements for containment leakage rate testing are contained in Title10, “Energy,” Code of Federal Regulations CF
18、R!, Part 50, “Domestic Licensing of Produc-tion and Utilization Facilities,” Appendix J, “Primary Reactor Containment LeakageTesting For Water-Cooled Power Reactors.”The previous revision to this standard was issued in 1994. 10 CFR 50, Appendix J,underwent a major revision in 1995. The content of 10
19、 CFR 50, Appendix J, as it wasbefore the revision, was retained in the new revision; only now it is known as “Option APrescriptive Requirements.” The revision also added a second option, “Option BPerformance-Based Requirements,” which contains risk-informed, performance-basedrequirements for contain
20、ment leakage rate testing. The most significant changes embod-ied in Option B allow much longer intervals between tests, based on good performance ofthe structure or component being tested.The U.S. Nuclear Regulatory Commission has also issued Regulatory Guide 1.163,“Performance-Based Containment Le
21、ak-Test Program,” dated September 1995, to provideguidance on complying with Option B of 10 CFR 50, Appendix J. Regulatory Guide 1.163endorses, with several exceptions, NEI 94-01, “Industry Guideline For ImplementingPerformance-Based Option of 10 CFR Part 50, Appendix J,” Revision 0, which in turnen
22、dorses the 1994 edition of this standard, with certain changes due to the nonperformance-based nature of the 1994 standard.This revision of the standard has been written to consolidate into one document guide-lines for testing under Option B. This will eliminate the need to refer to three separatedo
23、cuments Regulatory Guide 1.163, NEI 94-01, and ANSI0ANS-56.8-1994! and the at-tendant inefficiency and confusion such a situation can cause. Option B requires areference in each plants Technical Specifications to the implementation document used todevelop the leakage testing program; this revision t
24、o the standard has been written sothat it may be referenced in Technical Specifications as the implementation documentrather than Regulatory Guide 1.163 and its chain of subordinate documents.Working Group ANS-56.8 of the Standards Committee of the American Nuclear Societyhad the following membershi
25、p at the time it approved this standard:iJ. Glover, Chair, Graftel, Inc.H. Hill, BCP Technical ServicesM. Jennex, San Diego State University Foundation for Knowledge ManagementD. Lurie, U.S. Nuclear Regulatory CommissionM. Hutcheson, Duke Energy CompanyJ. Pulsipher, U.S. Nuclear Regulatory Commissio
26、nB. Patel, ConsultantR. Shirk, PPL SusquehannaT. Newton, Nuclear Management CorporationK. Clark, Tennessee Valley AuthorityP. Chang, Southern California EdisonW. Brown, Duke Energy CompanyD. Oakley, Exelon CorporationThis standard was processed and approved for submittal to ANSI by the Ameri-can Nuc
27、lear Societys Nuclear Facilities Standards Committee NFSC!. Commit-tee approval of the standard does not necessarily imply that all committee membersvoted for its approval. At the time it approved this standard, the NFSC committeehad the following members:D. J. Spellman, Chair, Oak Ridge National La
28、boratoryS. Ahmad, Standards Administrator, American Nuclear SocietyC. K. Brown, Southern Nuclear Operating CompanyR. H. Bryan, Jr., Tennessee Valley AuthorityH. Chander, U.S. Department of EnergyJ. D. Cohen, Westinghouse Savannah River CompanyM. T. Cross, Westinghouse Electric CompanyD. Eggett, AES
29、EngineeringR. A. Hill, GE Nuclear EnergyN. P. Kadambi, U.S. Nuclear Regulatory CommissionJ. Love, Bechtel Power CorporationJ. T. Luke, Exelon NuclearJ. F. Mallay, Framatome ANPR. H. McFetridge, Westinghouse Electric CompanyC. H. Moseley, BWXT Y-12N. Norman, Parsons Engineering ServicesW. N. Prillama
30、n, Framatome ANPW. B. Reuland, Electric Power Research InstituteM. Ruby, Rochester Gas 2! test instrumentation;3! test procedures;4! test methods;5! acceptance criteria;6! data analysis;7! inspection and recording of test results.2 Definitions1!The following terms are for general use inthisstandard:
31、acceptance criteria: The standards againstwhich test results are to be compared for es-tablishing the functional acceptability of theprimary containment as a leakage limitingboundary.accuracy: Conformity of an indicated value toan accepted standard value or true value.active failure: A malfunction o
32、f a componentthat relies on mechanical movement or changeof state to complete its intended function upondemand. Examples of active failures includethe failure of a valve or a check valve to moveto its correct position, or the failure of a pump,fan, or diesel generator to start. Spurious ac-tion of a
33、 power-operated component originat-ing within its actuation or control system shallbe regarded as an active failure unless specificdesign features or operating restrictions pre-clude such spurious action. An example is theunintended energization of a power-operatedvalve to open or close.administrati
34、ve limit: Leakage limit assignedto each Type B or Type C component as anindication of potential valve or penetration deg-radation and used to establish Type B and TypeC test performance-based intervals.as-found leakage rate: The leakage rate priorto any repairs or adjustments to the barrierbeing tes
35、ted.as-found testing: Leakage rate testing aftersome period of normal service conditions, per-formed prior to any repairs or adjustments.as-left leakage rate: The leakage rate follow-ing any repairs or adjustments to the barrierbeing tested.as-left testing: Leakage rate testing per-formed following
36、repairoradjustment.confidence level: The probability that the trueleakage rate does not exceed the upper confi-dence limit UCL!.1!Specialized definitions used in the appendices are defined in the appendix where they are used.1containment atmosphere mass weightedaverage temperature (T): The temperatu
37、rederived from weighting each temperature sen-sor reading by the mass it represents.containment integrated leakage rate test(CILRT): The leakage rate test performed onthe primary containment by simulating someof the conditions e.g., penetrations vented,drained, flooded, or in operation!that exist du
38、r-ing a design-basis accident DBA!. The CILRTconsists of the following phases or activities:1! inspecting the primary containment;2! pressurizing the primary containmentsystem;3! stabilizing the containment atmosphere;4! conducting a Type A test;5! conducting a verification test;6! depressurizing th
39、e primary containment.containment isolation valve: A valve subjectto Title 10, “Energy,” Code of Federal Regula-tions CFR!, Part 50, “DomesticLicensing ofProduction and Utilization Facilities,” Appen-dixA,“General Design Criteria,” Criteria 55,56, and 57,2!and also comparable valves inthose plants n
40、ot required to conform to Appen-dixAtothis part. A containment isolation valveis any valve that is relied upon to provide abarrier between the containment environmentand the outside environment under postacci-dent loss-of-coolant conditions, in the plantslicensing basis.continuous leakage monitoring
41、 system: Apermanently installed, on-line pneumatic mea-surement system that continuously monitorsthe leakage rate of containment system pene-trations at a pressure not less than Pa.containment leakage rate test program: Thecomprehensive testing of the primary contain-ment that includes Type A, Type
42、B, Type C,and leakage rate verification tests.data set: The set of readings from all primarytest instrumentation for a CILRT taken over asingle scan of the data acquisition systemDAS!or CILRT software.design-basis accident (DBA): The accidentinitiated by a single component failure or oper-ator error
43、, as described in the safety analysisofthe plant, that results in the maximum pri-mary containment internal peak pressure andinfission product release to the containmentatmosphere.extended test interval: The maximum allow-able Type A, Type B, or Type C test intervalfollowing the demonstration of goo
44、d perfor-mance history.initial test interval: The allowable Type A,Type B, or Type C test interval prior to thedemonstration of good performance history.La(wt%/24 h): The maximum allowable TypeA test leakage rate at Pa.Lam(wt%/24 h): Estimate of the leakage rate,derived as a function of the least sq
45、uares slopeand intercept, for the Type A test at pressurePaobtained from testing the primary contain-ment by simulating some of the conditions thatwould exist under DBA conditionse.g., vented,drained, flooded, or pressurized!.Lc(wt%/24 h): The composite primary contain-ment leakage rate measured usi
46、ng the CILRTinstruments after L0is superimposed.L0(wt%/24 h): The known leakage rate super-imposed on the primary containment duringthe verification test.leak: An opening that allows the passage offluid through it.leakage: The quantity of fluid escaping from aleak or leaks.leakage rate: The rate at
47、which the containedfluid escapes from the test volume at a speci-fied test pressure.local leakage rate test (LLRT): The leakagerate test performed on Type B and Type Ccomponents.2!Title 10, “Energy,” Code of Federal Regulations, Part 50, “DomesticLicensing of Production and UtilizationFacilities,” A
48、ppendixA,“General Design Criteria,” Criteria 55, 56, and 57. Available from the Superintendentof Documents, Government Printing Office, Washington, D.C. 20402.American National Standard ANSI0ANS-56.8-20022maximum pathway leakage rate (MXPLR)3!:The maximum leakage rate attributed to a pene-tration le
49、akage path. The MXPLR is the larger,not the total, leakage of two barriers in series.minimum pathway leakage rate (MNPLR)3!:The minimum leakage rate that can be attrib-uted to a penetration leakage path e.g., thesmaller of either the inboard or outboard bar-riers individual leakage rates!. The pathwaysMNPLR can be determined by one-half of thetotal measured leakage rate when tested bypressurizing between the inboard and out-board barriers.overall integrated leakage rate: The totalleakage through all tested leakage paths in-cluding containment welds, valves