API TR 10TR4-2008 Selection of Centralizers for Primary Cementing Operations (First Edition)《主要粘结操作用定中心装置的选择.第1版》.pdf

上传人:sumcourage256 文档编号:430124 上传时间:2018-11-10 格式:PDF 页数:36 大小:1.48MB
下载 相关 举报
API TR 10TR4-2008 Selection of Centralizers for Primary Cementing Operations (First Edition)《主要粘结操作用定中心装置的选择.第1版》.pdf_第1页
第1页 / 共36页
API TR 10TR4-2008 Selection of Centralizers for Primary Cementing Operations (First Edition)《主要粘结操作用定中心装置的选择.第1版》.pdf_第2页
第2页 / 共36页
API TR 10TR4-2008 Selection of Centralizers for Primary Cementing Operations (First Edition)《主要粘结操作用定中心装置的选择.第1版》.pdf_第3页
第3页 / 共36页
API TR 10TR4-2008 Selection of Centralizers for Primary Cementing Operations (First Edition)《主要粘结操作用定中心装置的选择.第1版》.pdf_第4页
第4页 / 共36页
API TR 10TR4-2008 Selection of Centralizers for Primary Cementing Operations (First Edition)《主要粘结操作用定中心装置的选择.第1版》.pdf_第5页
第5页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Selection of Centralizers for Primary Cementing OperationsAPI TECHNICAL REPORT 10TR4FIRST EDITION, MAY 2008Selection of Centralizers forPrimary Cementing OperationsUpstream DepartmentAPI TECHNICAL REPORT 10TR4FIRST EDITION, MAY 2008Special NotesAPI publications necessarily address problems of a gene

2、ral nature. With respect to particular circumstances, local,state, and federal laws and regulations should be reviewed.Neither API nor any of APIs employees, subcontractors, consultants, committees, or other assignees make anywarranty or representation, either express or implied, with respect to the

3、 accuracy, completeness, or usefulness ofthe information contained herein, or assume any liability or responsibility for any use, or the results of such use, of anyinformation or process disclosed in this publication. Neither API nor any of APIs employees, subcontractors,consultants, or other assign

4、ees represent that use of this publication would not infringe upon privately owned rights.API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure theaccuracy and reliability of the data contained in them; however, the Institute makes no represe

5、ntation, warranty, orguarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss ordamage resulting from its use or for the violation of any authorities having jurisdiction with which this publication mayconflict.API publications are publishe

6、d to facilitate the broad availability of proven, sound engineering and operatingpractices. These publications are not intended to obviate the need for applying sound engineering judgmentregarding when and where these publications should be utilized. The formulation and publication of API publicatio

7、nsis not intended in any way to inhibit anyone from using any other practices.Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standardis solely responsible for complying with all the applicable requirements of that standard. API does not represe

8、nt,warrant, or guarantee that such products do in fact conform to the applicable API standard.All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written p

9、ermission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.Copyright 2008 American Petroleum InstituteForewordNothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for themanufact

10、ure, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anythingcontained in the publication be construed as insuring anyone against liability for infringement of letters patent.Suggested revisions are invited and should be submitted to the Standards Departme

11、nt, API, 1220 L Street, NW,Washington, D.C. 20005, standardsapi.org.iiiContentsPage1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Benefits of Centralization . . . . . . . . .

12、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 Definition of Standoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Casing Centraliza

13、tion and Centralizing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 General Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.1 Centrali

14、zer Types Available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2 Advantages and Limitations of Centralizer Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.3 Sel

15、ecting the Type of Centralizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.4 Drag Force vs Standoff Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

16、03.5 Location and Number of Centralizers to Obtain a Desired Standoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.6 Estimated Drag and Torque When Using Rigid and Solid Centralizers . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.7 Friction Coefficients . . . . . . . .

17、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.8 Potential Benefit of Centralizer-induced Swirl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.9 Centralizer Installatio

18、n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.10 Use of Dissimilar Materials: Casing-centralizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.11 Centraliz

19、er-formation Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.12 Stop Collar and Integral Collar Holding Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.13 Centr

20、alizer Quality Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.14 Effect of Expansion Coefficient of the Stop Collar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.

21、15 Potential Impact of Centralizers on Casing String Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.16 Compatibility of the Centralizers with Wellbore Fluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.17 Thermal Stabili

22、ty of the Centralizer Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.18 Potential Carbon Steel and Chrome Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.19 Potential Generation

23、 of Gases from Materials Under Downhole Conditions. . . . . . . . . . . . . . . . . . . . . . . 233.20 Centralizer Wear During Running in the Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figures1 Definition of Sandoff . . . . . . . . . . . .

24、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Example of a Bow-spring Centralizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Example of a Double Bow-spring

25、 Centralizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Example of a Rigid Centralizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Example of a Rigid Centralize

26、ra Slim-hole Centralizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Example of a Rigid Centralizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Example of Steel Spiral Solid Centr

27、alizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Example of Steel Spiral Solid Centralizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Example of an Integral Solid Cent

28、ralizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 Example of Solid-roller Centralizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 Example of Centralizers Bo

29、nded Directly onto the Pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612 Example of Limited OD Bow-spring Centralizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 Computer Simulation for Case with Bow-spring

30、 Centralizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 Computer Simulation for Case with Rigid Centralizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915 Example of the Effect of Normal Forces on Selection of Centralizer Type

31、. . . . . . . . . . . . . . . . . . . . . . . . . 1016 Typical Swirl Angle vs Distance Away from the Centralizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317 Swirl-inducing Centralizer in a Deviated, Enlarged Hole . . . . . . . . . . . . . . . . . . . . . . . . . . .

32、 . . . . . . . . . . . . 1418 Swirl-inducing Centralizer in an Inclined, Non-enlarged Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419 Effect of Bow-spring Centralizer in Proximity of the Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

33、20 Example of Bow Centralizer with Fins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1521 Centralizer Installations for Casing Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16v

34、Page22 A Type of Rigid Centralizer Installed for Casing Rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1623 Four Centralizer Installation Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1724

35、 Visualization of a Centralizer Embedded into the Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1825 Testing of Unconsolidated Sand Under Hydrostatic Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1926 Impact of Centralizers on Casing

36、String Stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Tables1 Example of Parameters Used in Generated Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Standoff of Rigid or Solid Centralizers vs Hole

37、Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Holding Forces of Different Type Stop Collars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Wear Measurements in Micrometers. . . . . . . . . . . . . . .

38、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Selection of Centralizers for Primary Cementing Operations Acknowledgment API Subcommittee 10 acknowledges the assistance from industry manufacturers in compiling this document. Many of them provided photos of their

39、centralizers, and those illustrations are included in this document. 1 Introduction The proper centralization of the casing for primary cementing has long been a critical step in quality cementing. Lack of proper centralization can lead to severe cementing problems, including lack of zonal isolation

40、 and improper casing support. The goal of this document is to provide the petroleum industry with information for three types of centralizers, their selection and application, and their advantages and limitations. 2 Benefits of Centralization When performing primary cementing jobs, the casing should

41、 be centralized in the wellbore for three reasons: 1. to help get the casing to bottom (this includes reduction of the potential for sticking of the string); 2. to help move the casing during mud conditioning and during the cementing job; 3. to provide an optimal path for fluid flow during mud condi

42、tioning and cementing allowing for effective mud removal to achieve zonal isolation. Field experiences, numerous large-scale experiments and computer simulations have shown that poor casing centralization can be detrimental to the cement job, particularly in narrow annuli. Therefore, a good centrali

43、zation program should aim for high levels of standoff, which produces improved mud removal, particularly across critical areas of the wellbore, that is, those areas where isolation is required. It is imperative the user investigate the standoff at all points, especially between the centralizers. 2.1

44、 Definition of Standoff Standoff is defined by API/ISO documents (e.g. ISO 10427-2) as the smallest distance between the outside diameter of the casing and the wellbore. The standoff ratio is defined by the same documents as the ratio of standoff to the annular clearance for perfectly centered casin

45、g expressed as a percentage (%). Annular clearance for perfectly centered casing is the wellbore diameter minus the casing outside diameter divided by two. Figure 1 illustrates standoff and annular clearance. 1 2 API TECHNICAL REPORT 10TR4 AB C Formation Casing Cement Mud BAC=Standoff % x 100 A = Di

46、stance from center of Wellbore to Formation B = Distance from center of Casing to OD of Casing C = Smallest distance from OD of Casing to Formation NOTE Failure to place cement completely around the casing, as portrayed in the figure, is a likely result of inadequate standoff (centralization) and re

47、sults in failure to achieve isolation. Figure 1Definition of Standoff 2.2 Casing Centralization and Centralizing Devices Casing centralization requires mechanical devices (centralizers) to keep the casing away from the wellbore and/or from the cased sections of the well. Significant issues include:

48、1. the centralizer must provide enough load support to overcome the normal forces tending to lay the casing against the formation wall, particularly in deviated holes, horizontal holes and through doglegs; 2. enough centralizers should be used to provide good casing centralization over the needed in

49、tervals (including at points between the centralizers); 3. it is normally assumed (however not always the case) that the formation can provide enough support for the tools (minimum centralizer embedment). SELECTION OF CENTRALIZERS FOR PRIMARY CEMENTING OPERATIONS 3 3 General Discussion 3.1 Centralizer Types Available The industry has developed three main types of centralizers: bow-spring, rigid, and solid. 3.1.1 Bow-spring Centralizer The bow-spring centralizer is composed of flexible spring bows (heat-treated steel springs) attached to two collars. By design the bows are

展开阅读全文
相关资源
  • API SALES OF NGL & LRG-2018 2016 Sales of Natural Gas Liquids and Liquefied Refinery Gas.pdfAPI SALES OF NGL & LRG-2018 2016 Sales of Natural Gas Liquids and Liquefied Refinery Gas.pdf
  • API MPMS 9 4-2018 Manual of Petroleum Measurement Standards Chapter 9 4-Continuous Density Measurement Under Dynamic (Flowing) Conditions (FIRST EDITION).pdfAPI MPMS 9 4-2018 Manual of Petroleum Measurement Standards Chapter 9 4-Continuous Density Measurement Under Dynamic (Flowing) Conditions (FIRST EDITION).pdf
  • API MPMS 9 3-2012 Manual of Petroleum Measurement Standards Chapter 9 3 Standard Test Method for Density Relative Density and API Gravity of Crude Petroleum and.pdfAPI MPMS 9 3-2012 Manual of Petroleum Measurement Standards Chapter 9 3 Standard Test Method for Density Relative Density and API Gravity of Crude Petroleum and.pdf
  • API MPMS 9 2-2012 Manual of Petroleum Measurement Standards Chapter 9 2 Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure H.pdfAPI MPMS 9 2-2012 Manual of Petroleum Measurement Standards Chapter 9 2 Standard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure H.pdf
  • API MPMS 9 1-2012 Manual of Petroleum Measurement Standards Chapter 9 1 Standard Test Method for Density Relative Density or API Gravity of Crude Petroleum and .pdfAPI MPMS 9 1-2012 Manual of Petroleum Measurement Standards Chapter 9 1 Standard Test Method for Density Relative Density or API Gravity of Crude Petroleum and .pdf
  • API MPMS 8 5-2015 Manual of Petroleum Measurement Standards Chapter 8 5 Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils Condensate.pdfAPI MPMS 8 5-2015 Manual of Petroleum Measurement Standards Chapter 8 5 Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils Condensate.pdf
  • API MPMS 8 5 SPANISH-2015 Manual of Petroleum Measurement Standards Chapter 8 5 - Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils .pdfAPI MPMS 8 5 SPANISH-2015 Manual of Petroleum Measurement Standards Chapter 8 5 - Standard Practice for Manual Piston Cylinder Sampling for Volatile Crude Oils .pdf
  • API MPMS 8 4-2017 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (FOURTH .pdfAPI MPMS 8 4-2017 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (FOURTH .pdf
  • API MPMS 8 4-2014 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (THIRD E.pdfAPI MPMS 8 4-2014 Manual of Petroleum Measurement Standards Chapter 8 4 Standard Practice for Sampling and Handling of Fuels for Volatility Measurement (THIRD E.pdf
  • API MPMS 8 3-1995 Manual of Petroleum Measurement Standards Chapter 8 - Sampling Section 3 - Standard Practice for Mixing and Handling of Liquid Samples of Petr.pdfAPI MPMS 8 3-1995 Manual of Petroleum Measurement Standards Chapter 8 - Sampling Section 3 - Standard Practice for Mixing and Handling of Liquid Samples of Petr.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > API

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1