ANSI IEEE C57.18.10-1998 Standard Practices and Requirements for Semiconductor Power Rectifier Transformers (Replaces ANSI IEEE C57.18)《半导体电力整流变压器要求和标准实施规程》.pdf

上传人:dealItalian200 文档编号:435346 上传时间:2018-11-14 格式:PDF 页数:69 大小:735.41KB
下载 相关 举报
ANSI IEEE C57.18.10-1998 Standard Practices and Requirements for Semiconductor Power Rectifier Transformers (Replaces ANSI IEEE C57.18)《半导体电力整流变压器要求和标准实施规程》.pdf_第1页
第1页 / 共69页
ANSI IEEE C57.18.10-1998 Standard Practices and Requirements for Semiconductor Power Rectifier Transformers (Replaces ANSI IEEE C57.18)《半导体电力整流变压器要求和标准实施规程》.pdf_第2页
第2页 / 共69页
ANSI IEEE C57.18.10-1998 Standard Practices and Requirements for Semiconductor Power Rectifier Transformers (Replaces ANSI IEEE C57.18)《半导体电力整流变压器要求和标准实施规程》.pdf_第3页
第3页 / 共69页
ANSI IEEE C57.18.10-1998 Standard Practices and Requirements for Semiconductor Power Rectifier Transformers (Replaces ANSI IEEE C57.18)《半导体电力整流变压器要求和标准实施规程》.pdf_第4页
第4页 / 共69页
ANSI IEEE C57.18.10-1998 Standard Practices and Requirements for Semiconductor Power Rectifier Transformers (Replaces ANSI IEEE C57.18)《半导体电力整流变压器要求和标准实施规程》.pdf_第5页
第5页 / 共69页
亲,该文档总共69页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、 Recognized as anAmerican National Standard (ANSI)The Institute of Electrical and Electronics Engineers, Inc.345 East 47th Street, New York, NY 10017-2394, USACopyright 1998 by the Institute of Electrical and Electronics Engineers, Inc.All rights reserved. Published 1998. Printed in the United State

2、s of AmericaISBN 0-7381-No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.IEEE Std C57.18.10-1998(R2003)(Revision and redesignation ofANSI/IEEE C57.18-1964)IEEE Standard Practices and Requi

3、rements for Semiconductor Power Rectifier TransformersSponsorTransformers Committeeof theIEEE Power Engineering SocietyApproved 4 February 1999American National Standards InstituteApproved 19 March 1998IEEE-SA Standards BoardAbstract: Practices and requirements for semiconductor power rectifier tran

4、sformers for dedicatedloads rated single-phase 300 kW and above and three-phase 500 kW and above are included.Static precipitators, high-voltage converters for dc power transmission, and other nonlinear loadsare excluded. Service conditions, both usual and unusual, are specified, or other standards

5、arereferenced as appropriate. Routine tests are specified. An informative annex provides severalexamples of load loss calculations for transformers when subjected to nonsinusoidal currents,based on calculations provided in the standard.Keywords: eddy current losses, harmonic load losses, single-phas

6、e transformers, three-phasetransformers, three-winding transformers, transformer load losses, two-winding transformersIEEE Standardsdocuments are developed within the IEEE Societies and the Standards Coordinat-ing Committees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the

7、committees serve voluntarily and without compensation. They are not necessarily members of theInstitute. The standards developed within IEEE represent a consensus of the broad expertise on thesubject within the Institute as well as those activities outside of IEEE that have expressed an inter-est in

8、 participating in the development of the standard.Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not implythat there are no other ways to produce, test, measure, purchase, market, or provide other goods andservices related to the scope of the IEEE Standard. Furth

9、ermore, the viewpoint expressed at thetime a standard is approved and issued is subject to change brought about through developments inthe state of the art and comments received from users of the standard. Every IEEE Standard is sub-jected to review at least every five years for revision or reaffirm

10、ation. When a document is morethan five years old and has not been reaffirmed, it is reasonable to conclude that its contents,although still of some value, do not wholly reflect the present state of the art. Users are cautioned tocheck to determine that they have the latest edition of any IEEE Stand

11、ard.Comments for revision of IEEE Standards are welcome from any interested party, regardless ofmembership affiliation with IEEE. Suggestions for changes in documents should be in the form of aproposed change of text, together with appropriate supporting comments.Interpretations: Occasionally questi

12、ons may arise regarding the meaning of portions of standards asthey relate to specific applications. When the need for interpretations is brought to the attention ofIEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards rep-resent a consensus of all concerned

13、 interests, it is important to ensure that any interpretation hasalso received the concurrence of a balance of interests. For this reason, IEEE and the members of itssocieties and Standards Coordinating Committees are not able to provide an instant response tointerpretation requests except in those

14、cases where the matter has previously received formalconsideration. Comments on standards and requests for interpretations should be addressed to:Secretary, IEEE-SA Standards Board445 Hoes LaneP.O. Box 1331Piscataway, NJ 08855-1331USAAuthorization to photocopy portions of any individual standard for

15、 internal or personal use isgranted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriatefee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contactCopyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers

16、, MA 01923 USA;(508) 750-8400. Permission to photocopy portions of any individual standard for educational class-room use can also be obtained through the Copyright Clearance Center.Note: Attention is called to the possibility that implementation of this standard mayrequire use of subject matter cov

17、ered by patent rights. By publication of this standard,no position is taken with respect to the existence or validity of any patent rights inconnection therewith. The IEEE shall not be responsible for identifying patents forwhich a license may be required by an IEEE standard or for conducting inquir

18、ies intothe legal validity or scope of those patents that are brought to its attention.Copyright 1998 IEEE. All rights reserved.iiiIntroduction(This introduction is not part of IEEE Std C57.18.10-1998, IEEE Standard Practices and Requirements for Semiconduc-tor Power Rectifier Transformers.)Early ed

19、itions of ANSI C57.18 were written for transformers used with pool cathode mercury arc rectifiers.The last revision date for ANSI C57.18 was 1964. That standard did not reflect the practices that have devel-oped with the use of semiconductor rectifying or converting devices, nor did it reflect the l

20、atest transformertechnology. As a result, much of it is inconsistent with current practices and with other related standards,such as ANSI C34.2*, that deal with semiconductor converters. This new standard is the result of the deci-sion to write a new rectifier transformer standard instead of revisin

21、g the old standard. Suggestions forimprovement of these practices will be welcomed.Basic impulse level (BIL) ratings for windings connected to converters are not specified by this standard.There are many practical reasons why windings connected to converters need not have a BIL test or rating.These

22、windings are often high-current, low-voltage windings that will not produce ANSI standard wave-forms when tested. Interleaved windings cannot be impulse tested easily. Usually the converter and thetransformer are close coupled in a throat connection and not subject to lightning strikes. The converte

23、r usu-ally cannot withstand normal transformer BIL ratings for the winding voltages to which they are connected.These conditions arent always true, however. If a user wishes to have a BIL rating or test, this may bearranged through commercial negotiations and technical specifications that may overri

24、de this standard. Thisshould also be acknowledged by the transformer manufacturer during the bidding process.Hottest-spot winding temperatures are referred to in this standard. These are not tested values. Hottest-spottemperatures cannot be measured from a practical standpoint on production units. T

25、herefore, average wind-ing temperatures plus a hottest-spot increment may be used. There is continuing work in other standardsgroups on this matter. The methods of rating the transformer kVA and currents in previous editions of ANSI C57.18 were based onthe rms equivalent of a rectangular current wav

26、e shape based on the dc rated load commutated with zerocommutating angle. This is the rms kVA and current method. All of the tables in Clause 10 are based on thistraditional method. A new approach is to base the transformer kVA and currents on the rms value of the fun-damental current and kVA. This

27、is the fundamental kVA and current method. The fundamental kVA methodis in use in IEC standards. This approach needs to be reflected in ANSI C34.2 and ANSI C34.3 as well as inthis standard. The traditional tables are retained in Clause 10 to maintain its method. Both kVA values willbe shown on the n

28、ameplate to accommodate either method. Specifying engineers should clearly definewhether they are specifying the traditional rms kVA or the fundamental kVA so as to avoid confusion. RMSkVA is beneficial to users who utilize their primary metering on the transformer to monitor load. The funda-mental

29、kVA is related directly to the real power used by the rectifier or convertor. The rms kVA can be deter-mined when the fundamental kVA is given along with the harmonic spectrum for the load. The specifyingengineer is always obligated to supply the harmonic spectrum in order to properly rate and desig

30、n the trans-former. The specifying engineer has overall system responsibility; definition of the harmonic spectrum is notthe transformer manufacturers responsibility. The difference between the two methods should result in onlya small percentage error in kVA sizing, but in some cases it may be deter

31、mined to be critical. Future coordi-nation with ANSI C34.2 and ANSI C34.3 working groups should give a final direction with regard to kVArating method.Two cautionary notes are in order regarding testing. First, errors may result when measuring losses on transformers with low power factors. Care must

32、 be exer-cised in making the loss measurements for rectifier transformers with high reactance and low losses. Test tol-*A new working group has been formed to revise ANSI C34.2.ivCopyright 1998 IEEE. All rights reserved.erances should be held to 3% throughout the ranges of reactance and losses so as

33、 to accurately measure straylosses for the harmonic calculations. There is ongoing work on this subject within the Loss MeasurementWorking Group of the Performance Characteristics Subcommittee. Second, other errors regarding resistance readings for losses or temperature rise tests are possible on lo

34、w-voltage, high-current windings having very low resistance, often with bolted joints. Connection losses mayalter normal resistance measurements. Work on this topic should be undertaken in the future. The exact methodology for temperature rise testing using service losses enhanced with harmonics nee

35、ds tobe more fully developed. After this standard has been in use, it is expected that manufacturers and users willdevelop more detailed preferred methods. Experience will also provide insight as to whether there are anyserious shortcomings in these methods. It is hoped that they will be found to be

36、 safely conservative. It isbelieved that some development time is necessary with the new approach before exact methods are pre-scribed.Work should be done on future revisions to this standard to develop more detailed methods of interphasetransformer loss testing. More precise methods for determining

37、 losses for commercial guarantee purposes,as well as thermal and magnetic capability, are needed. These were not attempted in this standard revisiondue to lack of time. This standard was developed by a Working Group of the Subcommittee on Performance Characteristics ofthe IEEE Transformer Committee.

38、 The Working Group had the following membership: Sheldon P. Kennedy,ChairRajendra AhujaJohn ArmstrongKal AtoutJacques AubinRoy A. BancroftAlfons BimbrisJerry L. CorkranJohn CrouseJohn A. EbertJoseph Foldi Jerry FrankJohn GraceRoger HayesPhilip J. HopkinsonMike H. ImanCharles W. JohnsonAnthony J. Jon

39、nattiEd KalksteinEric KauffmanLawrence A. KirchnerA. D. KlineAllan LudbrookRick Marek Michael J. MitelmanGlenn MorrisseyB. K. PatelDhiru S. PatelCharlie PoundsGuy PregentJeewan PuriSubhas SarkarIbrahim ShteyhAnthony J. SiebertHyeong Jin Sim Kenneth R. SkingerVis ThenappanRobert A. Veitch Kenneth Zie

40、mannCopyright 1998 IEEE. All rights reserved.vThe following persons were on the balloting committee:When the IEEE-SA Standards Board approved this standard on 19 March 1998, it had the followingmembership:Richard J. Holleman,ChairDonald N. Heirman,Vice ChairJudith Gorman,SecretaryMember EmeritusKris

41、tin M. DittmannIEEE Standards Project EditorR. K. AhujaGeorge AllenJim AntweilerJ. ArteagaRoy A. BancroftE. BetancourtWallace B. BinderJoe V. BonucchiMax A. CambreDon ChuPeter W. ClarkeJerry L. CorkranRobert C. DegeneffDieter DohnalJ. C. DuartJohn A. EbertGary R. EngmannD. J. FallonJoseph FoldiMicha

42、el A. FranchekJuergen GerthSaurabh GhoshRichard D. GrahamRobert L. GrubbRobert L. GrunertMichael E. HaasPatrick HananErnst HaniqueN. Wayne HansenR. R. HayesPeter J. HoeflerT. L. HoldwayPhilip J. HopkinsonRichard HuberA. F. HuestonJohn S. HurstCharles W. JohnsonAnthony J. JonnattiLars-Erik JuhlinShel

43、don P. KennedyL. KogaBarin KumarJohn G. LackeyLarry A. LowdermilkJoe D. MacDonaldWilliam A. MaguireK. T. MassoudaJohn W. MatthewsL. Bruce McClungJack W. McGillNigel P. McQuinC. Patrick McShaneDaleep C. MohlaChuck R. MurrayWilliam H. Mutschler, Jr.Gerald A. PaivaB. K. PatelDhiru S. PatelPaulette A. P

44、ayneCarlos PeixotoDan D. PercoMark D. PerkinsLinden W. PierceGeorge J. ReitterJ. C. RiboudHazairin SamaulahLeo J. SavioWilliam E. SaxonWes W. SchwartzPat ScullyAnthony J. SiebertMark SiehlingHyeong Jin SimKenneth R. SkingerJ. Ed SmithJames E. SmithRonald J. StaharaJames E. StephensPeter G. StewartRo

45、n W. StonerJohn C. SullivanVis ThenappanJames A. ThompsonThomas P. TraubEdger R. TrummerJohn VandermaarRobert A. VeitchLoren B. WagenaarBarry H. WardRichard F. WeddletonWilliam G. WimmerSatish K. AggarwalClyde R. CampJames T. CarloGary R. EngmannHarold E. EpsteinJay ForsterThomas F. GarrityRuben D.

46、GarzonJames H. GurneyJim D. IsaakLowell G. JohnsonRobert KennellyE. G. “Al” KienerJoseph L. KoepfingerStephen R. LambertJim LogothetisDonald C. LoughryL. Bruce McClungLouis-Franois PauRonald C. PetersenGerald H. PetersonJohn B. PoseyGary S. RobinsonHans E. WeinrichDonald W. ZipseviCopyright 1998 IEE

47、E. All rights reserved.Copyright 1998 IEEE. All rights reserved.viiContents1. Overview 11.1 Scope 11.2 Mandatory requirements 12. References 13. Definitions 24. Symbols . 35. Service conditions 45.1 Usual service conditions 45.2 Unusual service conditions 46. Rating data . 56.1 Taps on rectifier tra

48、nsformers 66.2 Cooling classes of transformers. 66.3 Frequency. 66.4 Phases. 66.5 Rated kVA . 66.6 Compensation on rectifier transformers.66.7 Rated current 76.8 Connections 76.9 Polarity, angular displacement, and lead markings . 76.10 Impedance 86.11 Losses. 86.12 Temperature rise and insulation s

49、ystem capability 86.13 Nameplates. 87. Construction. 117.1 Mounting and location . 117.2 Tanks 117.3 Method of coolant preservation . 117.4 Grounding 117.5 Connections for shipping . 117.6 Accessories 118. Testing and calculations. 128.1 Routine tests. 128.2 Symbols used in tests. 138.3 Resistance measurement 138.4 Dielectric tests 138.5 Excitation losses. 138.6 Load losses. 138.7 Losses in interphase transformers 198.8 Impedance tests 19viiiCopyright 1998 IEEE. All rights reserved.8.9 Ratio tests. 208.10 Temperature rise test 208.11 Short-circuit tests . 228.12 Polarity an

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1