ASHRAE FUNDAMENTALS SI CH 28-2017 Combustion and Fuels.pdf

上传人:bowdiet140 文档编号:454818 上传时间:2018-11-23 格式:PDF 页数:22 大小:703.91KB
下载 相关 举报
ASHRAE FUNDAMENTALS SI CH 28-2017 Combustion and Fuels.pdf_第1页
第1页 / 共22页
ASHRAE FUNDAMENTALS SI CH 28-2017 Combustion and Fuels.pdf_第2页
第2页 / 共22页
ASHRAE FUNDAMENTALS SI CH 28-2017 Combustion and Fuels.pdf_第3页
第3页 / 共22页
ASHRAE FUNDAMENTALS SI CH 28-2017 Combustion and Fuels.pdf_第4页
第4页 / 共22页
ASHRAE FUNDAMENTALS SI CH 28-2017 Combustion and Fuels.pdf_第5页
第5页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、28.1CHAPTER 28COMBUSTION AND FUELSPrinciples of Combustion. 28.1Fuel Classification. 28.5Gaseous Fuels 28.5Liquid Fuels . 28.8Solid Fuels 28.10Combustion Calculations. 28.11Efficiency Calculations 28.15Combustion Considerations . 28.161. PRINCIPLES OF COMBUSTIONOMBUSTION is a chemical reaction in wh

2、ich an oxidantCreacts rapidly with a fuel to liberate stored energy as thermalenergy, generally in the form of high-temperature gases. Smallamounts of electromagnetic energy (light), electric energy (free ionsand electrons), and mechanical energy (noise) are also producedduring combustion. Except in

3、 special applications, the oxidant forcombustion is oxygen in the air. The oxidation normally occurs withthe fuel in vapor form. One notable exception is oxidation of solidcarbon, which occurs directly with the solid phase.Conventional fuels contain primarily hydrogen and carbon, in ele-mental form

4、or in various compounds (hydrocarbons). Their com-plete combustion produces mainly carbon dioxide (CO2) and water(H2O); however, small quantities of carbon monoxide (CO) and par-tially reacted flue gas constituents (gases and liquid or solid aerosols)may form. Most conventional fuels also contain sm

5、all amounts of sul-fur, which is oxidized to sulfur dioxide (SO2) or sulfur trioxide (SO3)during combustion, and noncombustible substances such as mineralmatter (ash), water, and inert gases. Flue gas is the product of com-plete or incomplete combustion and includes excess air (if present),but not d

6、ilution air (air added to flue gas downstream of the combus-tion process, such as through the relief opening of a draft hood).Fuel combustion rate depends on the (1) rate of chemical reactionof combustible fuel constituents with oxygen, (2) rate at which oxy-gen is supplied to the fuel (mixing of ai

7、r and fuel), and (3) tempera-ture in the combustion region. The reaction rate is fixed by fuelselection. Increasing the mixing rate or temperature increases thecombustion rate.With complete combustion of hydrocarbon fuels, all hydrogenand carbon in the fuel are oxidized to H2O and CO2. Generally, co

8、m-plete combustion requires excess oxygen or excess air beyond theamount theoretically required to oxidize the fuel. Excess air is usu-ally expressed as a percentage of the air required to completely oxi-dize the fuel.In stoichiometric combustion of a hydrocarbon fuel, fuel isreacted with the exact

9、amount of oxygen required to oxidize all car-bon, hydrogen, and sulfur in the fuel to CO2, H2O, and SO2. There-fore, exhaust gas from stoichiometric combustion theoreticallycontains no incompletely oxidized fuel constituents and no unre-acted oxygen (i.e., no carbon monoxide and no excess air or oxy

10、-gen). The percentage of CO2contained in products of stoichiometriccombustion is the maximum attainable and is referred to as the stoi-chiometric CO2, ultimate CO2, or maximum theoretical percent-age of CO2.Stoichiometric combustion is seldom realized in practice becauseof imperfect mixing and finit

11、e reaction rates. For economy andsafety, most combustion equipment should operate with some excessair. This ensures that fuel is not wasted and that combustion is com-plete despite variations in fuel properties and supply rates of fueland air. The amount of excess air to be supplied to any combustio

12、nequipment depends on (1) expected variations in fuel properties andin fuel and air supply rates, (2) equipment application, (3) degree ofoperator supervision required or available, and (4) control require-ments. For maximum efficiency, combustion at low excess air is de-sirable.Incomplete combustio

13、n occurs when a fuel element is not com-pletely oxidized during combustion. For example, a hydrocarbonmay not completely oxidize to carbon dioxide and water, but mayform partially oxidized compounds, such as carbon monoxide, al-dehydes, and ketones. Conditions that promote incomplete com-bustion inc

14、lude (1) insufficient air and fuel mixing (causing localfuel-rich and fuel-lean zones), (2) insufficient air supply to the flame(providing less than the required amount of oxygen), (3) insufficientreactant residence time in the flame (preventing completion of com-bustion reactions), (4) flame imping

15、ement on a cold surface (quench-ing combustion reactions), or (5) flame temperature that is too low(slowing combustion reactions).Incomplete combustion uses fuel inefficiently, can be hazardousbecause of carbon monoxide production, and contributes to airpollution.Combustion ReactionsThe reaction of

16、oxygen with combustible elements and compoundsin fuels occurs according to fixed chemical principles, including Chemical reaction equationsLaw of matter conservation: the mass of each element in the reac-tion products must equal the mass of that element in the reactantsLaw of combining masses: chemi

17、cal compounds are formed byelements combining in fixed mass relationshipsChemical reaction ratesOxygen for combustion is normally obtained from air, which isa mixture of nitrogen, oxygen, small amounts of water vapor, car-bon dioxide, and inert gases. For practical combustion calculations,dry air co

18、nsists of 20.95% oxygen and 79.05% inert gases (nitro-gen, argon, etc.) by volume, or 23.15% oxygen and 76.85% inertgases by mass. For calculation purposes, nitrogen is assumed topass through the combustion process unchanged (although smallquantities of nitrogen oxides form). Table 1 lists oxygen an

19、d airrequirements for stoichiometric combustion and the products ofstoichiometric combustion of some pure combustible materials (orconstituents) found in common fuels.Flammability LimitsFuel burns in a self-sustained reaction only when the volume per-centages of fuel and air in a mixture at standard

20、 temperature andpressure are within the upper and lower flammability limits (UFLand LFL), also called explosive limits (UEL and LEL; see Table 2).Both temperature and pressure affect these limits. As mixture tem-perature increases, the upper limit increases and the lower limit de-creases. As the pre

21、ssure of the mixture decreases below atmosphericpressure, the upper limit decreases and the lower limit increases.However, as pressure increases above atmospheric, the upper limitincreases and the lower limit is relatively constant.The preparation of this chapter is assigned to TC 6.10, Fuels and Co

22、mbus-tion.28.2 2017 ASHRAE HandbookFundamentals (SI)Ignition TemperatureIgnition temperature is the lowest temperature at which heat isgenerated by combustion faster than it is lost to the surroundingsand combustion becomes self propagating (see Table 2). The fuel/air mixture will not burn freely an

23、d continuously below the ignitiontemperature unless heat is supplied, but chemical reaction betweenthe fuel and air may occur. Ignition temperature is affected by alarge number of factors.The ignition temperature and flammability limits of a fuel/airmixture, together, are a measure of the potential

24、for ignition (GasEngineers Handbook 1965).Combustion ModesCombustion reactions occur in either continuous or pulse flamemodes. Continuous combustion burns fuel in a sustained manneras long as fuel and air are continuously fed to the combustion zoneand the fuel/air mixture is within the flammability

25、limits. Continu-ous combustion is more common than pulse combustion and is usedin most fuel-burning equipment.Pulse combustion is an acoustically resonant process that burnsvarious fuels in small, discrete fuel/air mixture volumes in a veryrapid series of combustions.The introduction of fuel and air

26、 into the pulse combustor is con-trolled by mechanical or aerodynamic valves. Typical combustorsconsist of one or more valves, a combustion chamber, an exit pipe,and a control system (ignition means, fuel-metering devices, etc.).Typically, combustors for warm-air furnaces, hot-water boilers,and comm

27、ercial cooking equipment use mechanical valves.Aerodynamic valves are usually used in higher-pressure applica-tions, such as thrust engines. Separate valves for air and fuel, asingle valve for premixed air and fuel, or multiple valves ofeither type can be used. Premix valve systems may require aflam

28、e trap at the combustion chamber entrance to prevent flash-back.In a mechanically valved pulse combustor, air and fuel are forcedinto the combustion chamber through the valves under pressures lessthan 3.5 kPa. An ignition source, such as a spark, ignites the fuel/airmixture, causing a positive press

29、ure build-up in the combustionTable 1 Combustion Reactions of Common Fuel ConstituentsConstituentMole-cular Formula Combustion ReactionsStoichiometric Oxygen and Air Requirements Flue Gas from Stoichiometric Combustion with Airkg/kg Fuelam3/m3Fuel Ulti-mate CO2,%Dew Point,cCm3/m3 Fuel kg/kg FuelO2Ai

30、r O2Air CO2H2OCO2H2OCarbon (to CO) C C + 0.5O2 CO 1.33 5.75bb Carbon (to CO2)C C + O2CO22.66 11.51bb29.30 3.664 Carbon monoxide CO CO + 0.5O2CO20.57 2.47 0.50 2.39 34.70 1.0 1.571 Hydrogen H2H2+ 0.5O2H2O 7.94 34.28 0.50 2.39 72 1.0 8.937Methane CH4CH4+ 2O2CO2+ 2H2O 3.99 17.24 2.00 9.57 11.73 59 1.0

31、2.0 2.744 2.246Ethane C2H6C2H6+ 3.5O22CO2+ 3H2O 3.72 16.09 3.50 16.75 13.18 57 2.0 3.0 2.927 1.798Propane C3H8C3H8+ 5O23CO2+ 4H2O 3.63 15.68 5.00 23.95 13.75 55 3.0 4.0 2.994 1.634Butane C4H10C4H10+ 6.5O24CO2+ 5H2O 3.58 15.47 6.50 31.14 14.05 54 4.0 5.0 3.029 1.550Alkanes CnH2n+2CnH2n + 2+ (1.5n + 0

32、.5)O2nCO2+ (n + 1)H2O 1.5n+ 0.57.18n+ 2.3953 nn + 1 44.01n 18.01(n + 1)14.026n + 2.016 14.026n + 2.016Ethylene C2H4C2H4+ 3O22CO2+ 2H2O 3.42 14.78 3.00 14.38 15.05 52 2.0 2.0 3.138 1.285Propylene C3H6C3H6+ 4.5O23CO2+ 3H2O 3.42 14.78 4.50 21.53 15.05 52 3.0 3.0 3.138 1.285Alkenes CnH2nCnH2n+ 1.5nO2nCO

33、2+ nH2O 3.42 14.78 1.50n 7.18n 15.05 52 nn 3.138 1.285Acetylene C2H2C2H2+ 2.5O22CO2+ H2O 3.07 13.27 2.50 11.96 17.53 39 2.0 1.0 3.834 0.692Alkynes CnH2mCnH2m+ (n + 0.5m)O2nCO2+ mH2O n + 0.5m4.78n+ 2.39m nm 22.005n 9.008m6.005n + 1.008m 6.005n + 1.008mSOxH2OSOxH2OSulfur (to SO2)S S + O2SO21.00 4.31bb

34、1.0SO2 1.998 (SO2)Sulfur (to SO3) S S + 1.5O2SO31.50 6.47bb1.0SO3 2.497 (SO3Hydrogen sulfide H2SH2S + 1.5O2SO2+ H2O 1.41 6.08 1.50 7.18 52 1.0SO21.0 1.880 (SO2)0.528Adapted, in part, from Gas Engineers Handbook (1965).aAtomic masses: H = 1.008, C = 12.01, O = 16.00, S = 32.06.bVolume ratios are not

35、given for fuels that do not exist in vapor form at reasonable temperatures or pressure.Table 2 Flammability Limits and Ignition Temperatures of Common Fuels in Fuel/Air MixturesSubstanceMolecular FormulaLower Flammability Limit, %Upper Flammability Limit, %Ignition Temperature, C ReferencesCarbon C

36、660 Hartman (1958)Carbon monoxide CO 12.5 74 609 Scott et al. (1948)Hydrogen H24.0 75.0 520 Zabetakis (1956)Methane CH45.0 15.0 705 Gas Engineers Handbook (1965)Ethane C2H63.0 12.5 520 to 630 Trinks (1947)Propane C3H82.1 10.1 466 NFPA (1962)n-Butane C4H101.86 8.41 405 NFPA (1962)Ethylene C2H42.75 28

37、.6 490 Scott et al. (1948)Propylene C3H62.00 11.1 450 Scott et al. (1948)Acetylene C2H22.50 81 406 to 440 Trinks (1947)Sulfur S 190 Hartman (1958)Hydrogen sulfide H2S 4.3 45.50 292 Scott et al. (1948)Flammability limits adapted from Coward and Jones (1952). All values corrected to 15.6C, 104 kPa, dr

38、y.Combustion and Fuels 28.3chamber. The positive pressure causes the valves to close, leavingonly the exit pipe of the combustion chamber as a pressure reliefopening. Combustion chamber and exit pipe geometry determine theresonant frequency of the combustor.The pressure wave from initial combustion

39、travels down the exitpipe at sonic velocity. As this wave exits the combustion chamber,most of the flue gases present in the chamber are carried with it intothe exit pipe. Flue gases remaining in the combustion chamber beginto cool immediately. Contraction of cooling gases and momentum ofgases in th

40、e exit pipe create a vacuum inside the chamber that opensthe valves and allows more fuel and air into the chamber. While thefresh charge of fuel/air enters the chamber, the pressure wave reachesthe end of the exit pipe and is partially reflected from the open end ofthe pipe. The fresh fuel/air charg

41、e is ignited by residual combustionand/or heat. The resulting combustion starts another cycle.Typical pulse combustors operate at 30 to 100 cycles per secondand emit resonant sound, which must be considered in their appli-cation. The pulses produce high convective heat transfer rates.Heating ValueCo

42、mbustion produces thermal energy (heat). The quantity ofheat generated by complete combustion of a unit of specific fuel isconstant and is called the heating value, heat of combustion, orcaloric value of that fuel. A fuels heating value can be determinedby measuring the heat evolved during combustio

43、n of a known quan-tity of the fuel in a calorimeter, or it can be estimated from quanti-tative chemical analysis of the fuel and the heating values of thevarious chemical elements in the fuel. For information on calculat-ing heating values, see the sections on Characteristics of Fuel Oilsand Charact

44、eristics of Coal.Higher heating value (HHV), gross heating value, or totalheating value includes the latent heat of vaporization and is deter-mined when water vapor in the fuel combustion products is cooledand condensed at standard temperature and pressure. Conversely,lower heating value (LHV) or ne

45、t heating value does not includelatent heat of vaporization. In the United States, when the heatingvalue of a fuel is specified without designating higher or lower, itgenerally means the higher heating value. (LHV is mainly used forinternal combustion engine fuels.)Heating values are usually express

46、ed in kJ/L or MJ/m3for gas-eous fuels, MJ/L for liquid fuels, and MJ/kg for solid fuels. Heatingvalues are always given in relation to standard temperature and pres-sure, usually 16, 20, or 25C and 101.325 kPa, depending on theparticular industry practice. Heating values in the United States andCana

47、da are based on standard conditions of 15.6C and 101.4 kPa,dry. Heating values of several substances in common fuels are listedin Table 3.With incomplete combustion, not all fuel is completely oxidized,and the heat produced is less than the heating value of the fuel.Therefore, the quantity of heat p

48、roduced per unit of fuel consumeddecreases (lower combustion efficiency).Not all heat produced during combustion can be used effectively.The greatest heat loss is the thermal energy of the increased tem-perature of hot exhaust gases above the temperature of incoming airand fuel. Other heat losses in

49、clude radiation and convection heattransfer from the outer walls of combustion equipment to the envi-ronment.Altitude CompensationAir at altitudes above sea level is less dense and has less mass ofoxygen per unit volume. The volume concentration of oxygen,however, remains the same as sea level. Therefore, combustion ataltitudes above sea level has less available oxygen to burn with thefuel unless compensation is made for the altitude. Combustionoccurs, but the amount of excess air is reduced. If exces

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1