ASTM A388 A388M-2015 Standard Practice for Ultrasonic Examination of Steel Forgings《钢锻件的超声波检验的标准实施规程》.pdf

上传人:feelhesitate105 文档编号:458229 上传时间:2018-11-25 格式:PDF 页数:8 大小:179.07KB
下载 相关 举报
ASTM A388 A388M-2015 Standard Practice for Ultrasonic Examination of Steel Forgings《钢锻件的超声波检验的标准实施规程》.pdf_第1页
第1页 / 共8页
ASTM A388 A388M-2015 Standard Practice for Ultrasonic Examination of Steel Forgings《钢锻件的超声波检验的标准实施规程》.pdf_第2页
第2页 / 共8页
ASTM A388 A388M-2015 Standard Practice for Ultrasonic Examination of Steel Forgings《钢锻件的超声波检验的标准实施规程》.pdf_第3页
第3页 / 共8页
ASTM A388 A388M-2015 Standard Practice for Ultrasonic Examination of Steel Forgings《钢锻件的超声波检验的标准实施规程》.pdf_第4页
第4页 / 共8页
ASTM A388 A388M-2015 Standard Practice for Ultrasonic Examination of Steel Forgings《钢锻件的超声波检验的标准实施规程》.pdf_第5页
第5页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: A388/A388M 15 Used in USNRC-RDT standardsStandard Practice forUltrasonic Examination of Steel Forgings1This standard is issued under the fixed designation A388/A388M; the number immediately following the designation indicates the yearof original adoption or, in the case of revision, the

2、 year of last revision. A number in parentheses indicates the year of last reapproval.A superscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This practice2covers the examination procedures for thecontact, pulse-echo ultrasonic examination of steel f

3、orgings bythe straight and angle-beam techniques. The straight beamtechniques include utilization of the DGS (Distance Gain-Size)method. See Appendix X3.1.2 This practice is to be used whenever the inquiry,contract, order, or specification states that forgings are to besubject to ultrasonic examinat

4、ion in accordance with PracticeA388/A388M.1.3 Supplementary requirements of an optional nature areprovided for use at the option of the purchaser. The supple-mentary requirements shall apply only when specified indi-vidually by the purchaser in the purchase order or contract.1.4 The values stated in

5、 either SI units or inch-pound unitsare to be regarded separately as standard. The values stated ineach system may not be exact equivalents; therefore, eachsystem shall be used independently of the other. Combiningvalues from the two systems may result in non-conformancewith the standard.1.5 This sp

6、ecification and the applicable material specifica-tions are expressed in both inch-pound units and SI units.However, unless the order specifies the applicable “M” speci-fication designation SI units, the material shall be furnishedto inch-pound units.1.6 This standard does not purport to address all

7、 of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3A469/A469M Specificat

8、ion for Vacuum-Treated Steel Forg-ings for Generator RotorsA745/A745M Practice for Ultrasonic Examination of Aus-tenitic Steel ForgingsA788/A788M Specification for Steel Forgings, General Re-quirementsE317 Practice for Evaluating Performance Characteristics ofUltrasonic Pulse-Echo Testing Instrument

9、s and Systemswithout the Use of Electronic Measurement InstrumentsE428 Practice for Fabrication and Control of Metal, Otherthan Aluminum, Reference Blocks Used in UltrasonicTestingE1065/E1065M Practice for Evaluating Characteristics ofUltrasonic Search Units2.2 Other Document:Recommended Practice fo

10、r Nondestructive Personnel Quali-fication and Certification SNT-TC-1A, (1988 or later)43. Terminology3.1 Definitions:3.1.1 indication levels (clusters), nfive or more indica-tions in a volume representing a 2-in. 50-mm or smaller cubein the forging.3.1.2 individual indications, nsingle indications s

11、howinga decrease in amplitude as the search unit is moved in anydirection from the position of maximum amplitude and whichare too small to be considered traveling or planar.3.1.3 planar indications, nindications shall be consideredcontinuous over a plane if they have a major axis greater than1 in. 2

12、5 mm or twice the major dimension of the transducer,whichever is greater, and do not travel.1This practice is under the jurisdiction of ASTM Committee A01 on Steel,Stainless Steel and Related Alloys and is the direct responsibility of SubcommitteeA01.06 on Steel Forgings and Billets.Current edition

13、approved July 15, 2015. Published July 2015. Originallyapproved in 1955. Last previous edition approved in 2011 as A388/A388M 11.DOI: 10.1520/A0388_A0388M-15.2For ASME Boiler and Pressure Vessel Code applications see related Specifi-cation SA-388/SA-388M in Section II of that Code.3For referenced AS

14、TM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4Available fromAmerican Society for Nondestructive Testing (ASNT), P.O. Box2851

15、8, 1711 Arlingate Ln., Columbus, OH 43228-0518, http:/www.asnt.org.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.1.4 traveling indications, ninductions whose leading

16、edge moves a distance equivalent to 1 in. 25 mm or more ofmetal depth with movement of the transducer over the surfaceof the forging.4. Significance and Use4.1 This practice shall be used when ultrasonic inspection isrequired by the order or specification for inspection purposeswhere the acceptance

17、of the forging is based on limitations ofthe number, amplitude, or location of discontinuities, or acombination thereof, which give rise to ultrasonic indications.4.2 The ultrasonic quality level shall be clearly stated asorder requirements.5. Ordering Information5.1 When this practice is to be appl

18、ied to an inquiry,contract, or order, the purchaser shall so state and shall alsofurnish the following information:5.1.1 Designation number (including year date),5.1.2 Method of establishing the sensitivity in accordancewith 9.2.2 and 9.3.3 (Vee- or rectangular-notch),5.1.2.1 The diameter and test m

19、etal distance of the flat-bottom hole and the material of the reference block inaccordance with 9.2.2.2,5.1.3 Quality level for the entire forging or portions thereofin accordance with 12.3, and5.1.4 Any options in accordance with 1.5, 6.4, 6.5, 7.1, 8.1,8.2, 9.1.11, 10.1, 10.2, and 12.2.6. Apparatu

20、s6.1 Electronic ApparatusAn ultrasonic, pulsed, reflectiontype of instrument shall be used for this examination. Thesystem shall have a minimum capability for examining atfrequencies from 1 to 5 MHz. On examining austeniticstainless forgings the system shall have the capabilities forexamining at fre

21、quencies down to 0.4 MHz.6.1.1 Apparatus Qualification and CalibrationBasicqualification of the ultrasonic test instrument shall be per-formed at intervals not to exceed 12 months or whenevermaintenance is performed that affects the equipment function.The date of the last calibration and the date of

22、 the next requiredcalibration shall be displayed on the test equipment.6.1.2 The ultrasonic instrument shall provide linear presen-tation (within 5 %) for at least 75 % of the screen height(sweep line to top of screen). The 5 % linearity referred to isdescriptive of the screen presentation of amplit

23、ude. Instrumentlinearity shall be verified in accordance with the intent ofPractice E317. Any set of blocks processed in accordance withPractice E317 or E428 may be used to establish the specified65 % instrument linearity.6.1.3 The electronic apparatus shall contain an attenuator(accurate over its u

24、seful range to 610 % (+1 dB) of theamplitude ratio) which will allow measurement of indicationsbeyond the linear range of the instrument.6.2 Search Units, having a transducer with a maximumactive area of 1 in.2650 mm2 with34 in. 20 mm minimumto 118 in. 30 mm maximum dimensions shall be used forstrai

25、ght-beam scanning (see 9.2); and search units with12 in.13 mm minimum to 1 in. 25 mm maximum dimensionsshall be used for angle-beam scanning (see 9.3).6.2.1 Transducers shall be utilized at their rated frequencies.6.2.2 Other search units may be used for evaluating andpinpointing indications.6.3 Cou

26、plants, having good wetting characteristics such asSAE No. 20 or No. 30 motor oil, glycerin, pine oil, or watershall be used. Couplants may not be comparable to one anotherand the same couplant shall be used for calibration andexamination.6.4 Reference Blocks, containing flat-bottom holes may beused

27、 for calibration of equipment in accordance with 6.1.2 andmay be used to establish recording levels for straight-beamexamination when so specified by the order or contract.6.5 DGS Scales, matched to the ultrasonic test unit andtransducer to be utilized, may be used to establish recordinglevels for s

28、traight beam examination, when so specified by theorder or contract. The DGS scale range must be selected toinclude the full thickness cross-section of the forging to beexamined. An example of a DGS overlay is found in AppendixX3.6.5.1 As an alternative to using DGS overlays, an ultrasonicinstrument

29、 having integral decibel gain or attenuator controlsin combination with a specifically paired transducer and DGSdiagram may be used to evaluate ultrasonic indications.7. Personnel Requirements7.1 Personnel performing the ultrasonic examinations to thispractice shall be qualified and certified in acc

30、ordance with awritten procedure conforming to Recommended Practice No.SNT-TC-1A (1988 or later) or another national standard that isacceptable to both the purchaser and the supplier.8. Preparation of Forging for Ultrasonic Examination8.1 Unless otherwise specified in the order or contract, theforgin

31、g shall be machined to provide cylindrical surfaces forradial examination in the case of round forgings; the ends ofthe forgings shall be machined perpendicular to the axis of theforging for the axial examination. Faces of disk and rectangularforgings shall be machined flat and parallel to one anoth

32、er.8.2 The surface roughness of exterior finishes shall notexceed 250 in. 6 m where the definition for surface finishis as per Specification A788/A788M unless otherwise shownon the forging drawing or stated in the order or the contract.8.3 The surfaces of the forging to be examined shall be freeof e

33、xtraneous material such as loose scale, paint, dirt, and soforth.9. Procedure9.1 General:9.1.1 As far as practicable, subject the entire volume of theforging to ultrasonic examination. Because of radii at changeof sections and other local configurations, it may be impossibleto examine some sections

34、of a forging.9.1.2 Perform the ultrasonic examination after heat treat-ment for mechanical properties (exclusive of stress-reliefA388/A388M 152treatments) but prior to drilling holes, cutting keyways, tapers,grooves, or machining sections to contour. If the configurationof the forging required for t

35、he treatment for mechanicalproperties prohibits a subsequent complete examination of theforging, it shall be permissible to examine prior to treatment formechanical properties. In such cases, reexamine the forgingultrasonically as completely as possible after heat treatment.9.1.3 To ensure complete

36、coverage of the forging volume,index the search unit with at least 15 % overlap with each pass.9.1.4 For manual scanning, do not exceed a scanning rate of6 in./s 150 mm/s.9.1.5 For automated scanning, adjust scanning speed orinstrument repetition rate, or both, to permit detection of thesmallest dis

37、continuities referenced in the specification and toallow the recording or signaling device to function. At no timeshall the scanning speed exceed the speed at which anacceptable calibration was made.9.1.6 If possible, scan all sections of forgings in twoperpendicular directions.9.1.7 Scan disk forgi

38、ngs using a straight beam techniquefrom at least one flat face and radially from the circumference,whenever practicable.9.1.8 Scan cylindrical sections and hollow forgings radiallyusing a straight-beam technique. When practicable, also exam-ine the forging in the axial direction.9.1.9 In addition, e

39、xamine hollow forgings by angle-beamtechnique from the outside diameter surface as required in9.3.1.9.1.10 In rechecking or reevaluation by manufacturer orpurchaser, use comparable equipment, search units, frequency,and couplant.9.1.11 Forgings may be examined either stationary or whilerotating in a

40、 lathe or on rollers. If not specified by thepurchaser, either method may be used at the manufacturersoption.9.2 Straight-Beam Examination:9.2.1 For straight-beam examination use a nominal 214-MHz search unit whenever practicable; however, 1 MHz is thepreferred frequency for coarse grained austeniti

41、c materials andlong testing distances. In many instances on examining coarsegrained austenitic materials it may be necessary to use afrequency of 0.4 MHz. Other frequencies may be used ifdesirable for better resolution, penetrability, or detectability offlaws.9.2.2 Establish the instrument sensitivi

42、ty by either thereflection, reference-block technique, or DGS method (seeAppendix X3 for an explanation of the DGS method).9.2.2.1 Back-Reflection Technique (Back-Reflection Cali-bration Applicable to Forgings with Parallel Entry and BackSurfaces)With the attenuator set at an appropriate level, fore

43、xample 5 to 1 or 14 dB, adjust the instrument controls toobtain a back reflection approximately 75 % of the full-screenheight from the opposite side of the forging. Scan the forgingat the maximum amplification setting of the attenuator (attenu-ator set at 1 to 1). Carry out the evaluation of discont

44、inuitieswith the gain control set at the reference level. Recalibration isrequired for significant changes in section thickness or diam-eter.NOTE 1High sensitivity levels are not usually employed wheninspecting austenitic steel forgings due to attendant high level of “noise”or “hash” caused by coars

45、e grain structure.9.2.2.2 Reference-Block CalibrationThe test surfaceroughness on the calibration standard shall be comparable to,but no better than, the item to be examined. Adjust theinstrument controls to obtain the required signal amplitudefrom the flat-bottom hole in the specified reference blo

46、ck.Utilize the attenuator in order to set up on amplitudes largerthan the vertical linearity of the instrument. In those cases,remove the attenuation prior to scanning the forging.NOTE 2When flat-surfaced reference block calibration is specified,adjust the amplitude of indication from the reference

47、block or blocks tocompensate for examination surface curvature (an example is given inAppendix X1).9.2.2.3 DGS CalibrationPrior to use, verify that the DGSoverlay matches the transducer size and frequency. Accuracyof the overlay can be verified by reference blocks andprocedures outlined in Practice

48、E317. Overlays are to beserialized to match the ultrasonic transducer and pulse echotesting system that they are to be utilized with.9.2.2.4 Choose the appropriate DGS scale for the cross-sectional thickness of the forging to be examined. Insert theoverlay over the CRT screen, ensuring the DGS scale

49、 base linecoincides with the sweep line of the CRT screen. Place theprobe on the forging, adjust the gain to make the first back-wallecho appear clearly on CRT screen. Using the Delay andSweep control, shift the screen pattern so that the leading edgeof the initial pulse is on zero of the DGS scale and theback-wall echo is on the DGS scale value corresponding to thethickness of the forging. Adjust the gain so the forgingback-wall echo matches the height of the DGS reference slopewithin 61 Db. Once adjusted, increase the gain by the Dbshown on

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1