1、Designation: B163 111Standard Specification forSeamless Nickel and Nickel Alloy Condenser and Heat-Exchanger Tubes1This standard is issued under the fixed designation B163; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year o
2、f last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1NOTETitle was corrected editorially in Novembe
3、r 2012.1. Scope*1.1 This specification2covers seamless tubes of nickel andnickel alloys, as shown in Table 1, for use in condenser andheat-exchanger service.1.2 This specification covers outside diameter and averagewall, or outside diameter and minimum wall tube.1.2.1 The sizes covered by this speci
4、fication are 3 in. (76.2mm) and under in outside diameter with minimum wallthicknesses of 0.148 in. (3.76 mm) and under, and with averagewall thicknesses of 0.165 in. (4.19 mm) and under.1.3 Tube shall be furnished in the alloys and conditions asshown in Table 2. For small diameter and light wall tu
5、be(converter sizes), see Appendix X2.1.4 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.5 The following safety hazards caveat pertains
6、 only to thetest method portion, Section 12, of this specification. Thisstandard does not purport to address all of the safety concerns,if any, associated with its use. It is the responsibility of the userof this standard to become familiar with all hazards includingthose identified in the appropria
7、te Material Safety Data Sheet(MSDS) for this product/material as provided by themanufacturer, to establish appropriate safety and healthpractices, and determine the applicability of regulatory limi-tations prior to use.2. Referenced Documents2.1 ASTM Standards:3B829 Specification for General Require
8、ments for Nickel andNickel Alloys Seamless Pipe and TubeB880 Specification for General Requirements for ChemicalCheck Analysis Limits for Nickel, Nickel Alloys andCobalt AlloysE8 Test Methods for Tension Testing of Metallic MaterialsE18 Test Methods for Rockwell Hardness of Metallic Ma-terialsE29 Pr
9、actice for Using Significant Digits in Test Data toDetermine Conformance with SpecificationsE76 Test Methods for Chemical Analysis of Nickel-CopperAlloys (Withdrawn 2003)4E112 Test Methods for Determining Average Grain SizeE140 Hardness Conversion Tables for Metals RelationshipAmong Brinell Hardness
10、, Vickers Hardness, RockwellHardness, Superficial Hardness, Knoop Hardness, andScleroscope HardnessE1473 Test Methods for Chemical Analysis of Nickel,Cobalt, and High-Temperature Alloys2.2 Federal Standards:5Fed. Std. No. 102 Preservation, Packaging and PackingLevelsFed. Std. No. 123 Marking for Shi
11、pment (Civil Agencies)Fed. Std. No. 182 Continuous Identification Marking ofNickel and Nickel-Base Alloys2.3 Military Standard:5MIL-STD-129 Marking for Shipment and Storage1This specification is under the jurisdiction of ASTM Committee B02 onNonferrous Metals and Alloys and is the direct responsibil
12、ity of SubcommitteeB02.07 on Refined Nickel and Cobalt and Their Alloys.Current edition approved Oct. 1, 2011. Published October 2011. Originallyapproved in 1941. Last previous edition approved in 2008 as B163 08. DOI:10.1520/B0163-11E01.2For ASME Boiler and Pressure Vessel Code applications see rel
13、ated Specifi-cation SB-163 in Section II of that Code.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4The la
14、st approved version of this historical standard is referenced onwww.astm.org.5Available from Standardization Documents Order Desk, DODSSP, Bldg. 4,Section D, 700 Robbins Ave., Philadelphia, PA 19111-5098, http:/www.dodssp.daps.mil.*A Summary of Changes section appears at the end of this standardCopy
15、right ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1TABLE 1 Chemical RequirementsAComposition,%N02200 N02201 N04400 N06025 N06045 N06600 N06601 N06603 N06686 N06690Nickel 99.0 minB99.0 minB63.0 minBremainderB45.0 minB72.0 minB58.063.0 remaind
16、erBremainderB58.0 minBCopper 0.25 0.25 28.034.0 0.1 0.3 0.5 1.0 0.5 . 0.5Molybdenum . . . . . . . . 15.017.0 .Iron 0.40 0.40 2.5 8.011.0 21.025.0 6.010.0 remainderB8.011.0 5.0 7.011.0Manganese 0.35 0.35 2.0 0.15 1.0 1.0 1.0 0.15 0.75 0.5Carbon 0.15 0.02 0.3 0.150.25 0.050.12 0.15 0.10 0.200.40 0.010
17、 0.05Silicon 0.35 0.35 0.5 0.5 2.53.0 0.5 0.5 0.5 0.08 0.5Sulfur 0.01 0.01 0.024 0.010 0.010 0.015 0.015 0.010 0.02 0.015Chromium . . . 24.026.0 26.029.0 14.017.0 21.025.0 24.026.0 19.023.0 27.031.0Aluminum . . . 1.82.4 . . 1.01.7 2.43.0 . .Titanium . . . 0.10.2 . . . 0.010.25 0.020.25 .Phosphorus .
18、 . . 0.020 0.020 . . 0.02 0.04 .Cerium . . . . 0.030.09 . . . . .Zirconium . . . 0.010.10 . . . 0.010.10 . .Yttrium . . . 0.050.12 . . . 0.010.15 . .Boron . . . . . . . . . .Cobalt . . . . . . . . . .Columbium(Nb). . . . . . . . . .Tungsten . . . . . . . . 3.04.4 .Nitrogen . . . . . . . . . .AMaximu
19、m unless range or minimum is given. Where ellipses (.) appear in this table, there is no requirement and analysis for the element need not be determined or reported.BElement shall be determined arithmetically by difference.B1631112TABLE 1 Chemical RequirementsA(continued)N06696 N06845 N08120 N08800
20、N08801 N08810 N08811 N08825Nickel remainderB44.050.0 35.039.0 30.035.0 30.034.0 30.035.0 30.035.0 38.046.0Copper 1.53.0 2.04.0 0.50 0.75 0.50 0.75 0.75 1.53.0Molybdenum 1.03.0 5.07.0 2.50 . . . . 2.53.5Iron 2.06.0 remainderBremainderB39.5 minB39.5 minB39.5 minB39.5 minB22.0 minBManganese 1.0 0.5 1.5
21、 1.5 1.50 1.5 1.5 1.0Carbon 0.15 0.05 0.020.10 0.10 0.10 0.050.10 0.060.10 0.05Silicon 1.02.5 0.5 1.0 1.0 1.00 1.0 1.0 0.5Sulfur 0.010 0.010 0.03 0.015 0.015 0.015 0.015 0.03Chromium 28.032.0 20.025.0 23.027.0 19.023.0 19.022.0 19.023.0 19.023.0 19.523.5Aluminum . . 0.40 0.150.60 . 0.150.60 0.150.60
22、C0.2Titanium 1.0 . 0.20 0.150.60 0.751.5 0.150.60 0.150.60C0.61.2Phosphorus . . 0.04 . . . . .Cerium . . . . . . . .Zirconium . . . . . . . .Yttrium . . . . . . . .Boron . . 0.010 . . . . .Cobalt . . 3.0 . . . . .Columbium(Nb). . 0.40.9 . . . . .Tungsten . 2.05.0 2.50 . . . . .Nitrogen . . 0.130.30
23、. . . . .AMaximum unless range or minimum is given. Where ellipses (.) appear in this table, there is no requirement and analysis for the element need not be determined or reported.BElement shall be determined arithmetically by difference.CAlloy UNS N08811: Al + Ti, 0.85 1.20.B16311133. Terminology3
24、.1 Definitions:3.1.1 average diameter, naverage of the maximum andminimum outside diameters, as determined at any one crosssection of the tube.3.1.2 tube, nhollow product of round or any other crosssection having a continuous periphery.4. Ordering Information4.1 It is the responsibility of the purch
25、aser to specify allrequirements that are necessary for the safe and satisfactoryperformance of material ordered under this specification.Examples of such requirements include, but are not limited to,the following:4.1.1 Alloy (Table 1).4.1.2 Condition (Temper) Table 3 and Appendix X1 andAppendix X2.4
26、.1.2.1 If annealed ends for stress relieved tubing aredesired, state length of end to be annealed and whether or notone end or both ends are to be annealed.4.1.3 Finish.4.1.4 DimensionsOutside diameter, minimum or averagewall thickness (in inches, not gage number), and length.4.1.5 Fabrication Opera
27、tions:4.1.5.1 Cold Bending or Coiling.4.1.5.2 Packing.4.1.5.3 Rolling or Expanding into Tube Sheets.4.1.5.4 Welding or BrazingProcess to be employed.4.1.5.5 Hydrostatic Test or Nondestructive Electric TestSpecify type of test (6.5).4.1.5.6 Pressure RequirementsIf other than required by6.5.4.1.5.7 En
28、dsPlain ends cut and deburred will be fur-nished.4.1.6 Supplementary RequirementsState nature and de-tails.4.1.7 CertificationState if certification is required (15).4.1.8 Samples for Product (Check) AnalysisWhethersamples for product (check) analysis shall be furnished.4.1.9 Purchaser InspectionIf
29、purchaser wishes to witnesstests or inspection of material at place of manufacture, thepurchase order must so state indicating which tests or inspec-tions are to be witnessed (Section 13).4.1.10 Small-Diameter and Light-Wall Tube (ConverterSizes)See Appendix X2.5. Chemical Composition5.1 The materia
30、l shall conform to the composition limitsspecified in Table 1.5.2 If a product (check) analysis is performed by thepurchaser, the material shall conform to the product (check)analysis per Specification B880.6. Mechanical Properties and Other Requirements6.1 Mechanical PropertiesThe material shall co
31、nform tothe mechanical properties specified in Table 3.6.2 HardnessWhen annealed ends are specified for tubingin the stress-relieved condition (see Table 3), the hardness ofthe ends after annealing shall not exceed the values specified inTable 3.6.3 FlareA flare test shall be made on one end of 1 %
32、ofthe number of finished tube lengths from each lot. For less than100 tubes in a lot, a flare test shall be made on one end of onetube length in the lot. In the case of stress relieved tubing withannealed ends, the test shall be made prior to, or subsequent to,annealing of the ends at the option of
33、the manufacturer.6.3.1 The flare test shall consist of flaring a test specimenwith an expanding tool having an included angle of 60 untilthe specified outside diameter has been increased by 30 %. Theflared specimen shall not exhibit cracking through the wall.6.4 Grain SizeA transverse sample represe
34、nting full-wallthickness of annealed alloys UNS N08120, UNS N08810 andUNS N08811 shall conform to an average grain size of ASTMNo. 5 or coarser.6.5 Hydrostatic or Nondestructive Electric TestEach tubeshall be subjected to either the hydrostatic test or the nonde-structive electric test. The type of
35、test to be used shall be at theoption of the manufacturer, unless otherwise specified in thepurchase order.6.5.1 Hydrostatic Test:TABLE 2 Alloy and ConditionsAlloy ConditionNickel UNS N02200 andlow-carbon nickel UNS N02201 annealed or stress-relievedNickel-copper alloy UNS N04400 annealed or stress-
36、relievedNickel-chromium-iron-aluminumalloy UNS N06603 annealedNickel-chromium-iron-copper alloyUNS N06696 annealedNickel-chromium-iron-aluminumalloy UNS N06601 annealedNickel-chromium-iron alloyUNS N06600 annealedLow-carbon nickel-chromium-molybdenum-tungsten alloyUNS N06686 annealedNickel-chromium-
37、iron alloyUNS N06690 annealedNickel-chromium-iron alloyUNS N06045 annealedNickel-iron-chromium alloyUNS N08120Aannealed or cold-workedNickel-iron-chromium alloyUNS N08800Aannealed or cold-workedNickel-iron-chromium alloyUNS N08810AannealedNickel-iron-chromium alloyUNS N08811AannealedNickel-iron-chro
38、mium alloyUNS N08801 annealedNickel-iron-chromium-molybdenum-copper alloy UNS N08825 annealedNickel-chromium-iron alloyUNS N06025 annealedNickel-iron-chromium-molybdenum-copper alloyUNS N06845 annealedAAlloy UNS N08800 is normally employed in service temperatures up to andincluding 1100F (593C). All
39、oys UNS N08810, UNS N08811, and UNS N08120are normally employed in service temperatures above 1100F (539C) whereresistance to creep and rupture is required, and it is annealed to develop controlledgrain size for optimum properties in this temperature range.B163 1114TABLE 3 Mechanical Properties of T
40、ubesMaterial and ConditionTensile Strength,min, ksi (MPa)Yield Strength(0.2 % Offset),min, psi (MPa)Elongation in 2 in.or 50 mm (or 4 D)min, %Rockwell Hardness(or equivalent) forannealed endsANickel UNS N02200:Annealed 55 (379) 15 (103) 40 .Stress-relieved 65 (448) 40 (276) 15 B65 maxLow-carbon nick
41、el UNS N02201:Annealed 50 (345) 12 (83) 40 .Stress-relieved 60 (414) 30 (207) 15 B62 maxNickel-copper alloy UNS N04400:Annealed 70 (483) 28 (193) 35 .Stress-relieved 85 (586) 55 (379) 15 B75 maxNickel-chromium-iron alloys:Annealed alloy UNS N06600 80 (552) 35 (241) 30 .Annealed alloy UNS N06601 80 (
42、552) 30 (207) 30 .Annealed alloy UNS N06690 85 (586) 35 (241) 30 .Annealed alloy UNS N06045 90 (620) 35 (240) 35 .Annealed alloy UNS N06025 98 (680) 39 (270) 30 .Annealed alloy UNS N06603 94 (650) 43 (300) 25 .Annealed alloy UNS N06696 85 (586) 35 (240) 30 .Low-carbon nickel-chromium-molybdenum-tung
43、sten alloy:Annealed UNS N06686 100 (690) 45 (310) 45 .Nickel-iron-chromium alloys:Annealed alloy UNS N08120 90 (620) 40 (276) 30 .Annealed alloy UNS N08800 75 (517) 30 (207) 30 .Annealed alloy UNS N08801 65 (448) 25 (172) 30 .Cold-worked alloy UNS N08800 83 (572) 47 (324) 30 .Annealed alloy UNS N088
44、10 65 (448) 25 (172) 30 .Annealed alloy UNS N08811 65 (448) 25 (172) 30 .Nickel-iron-chromium-molybdenum-copper-alloys:Annealed UNS N08825 85 (586) 35 (241) 30 .Annealed UNS N06845 100 (690) 40 (276) 30 .ARockwell or equivalent hardness values apply only to the annealed ends of stress-relieved tubin
45、g. Caution should be observed in using the Rockwell test on thin material,as the results may be affected by the thickness of specimen. For thickness under 0.050 in. (1.27 mm) the use of the Rockwell superficial or the Vickers hardness test issuggested. For hardness conversions for nickel and high-ni
46、ckel alloys see Hardness Conversion Tables E140.TABLE 4 Permissible Variations in Outside Diameter and Wall Thickness of Condenser and Heat Exchanger TubesNOTE 1The tolerances in the table apply to individual measurements of outside diameter and include out-of-roundness (ovality), and apply to allma
47、terials and all conditions, except that for thin wall tubes having a nominal wall of 3 % or less of the outside diameter, the mean outside diameter shallcomply with the permissible variations of the above table and individual measurements (including ovality) shall conform to the plus and minus value
48、sof the table with the values increased by12 % of the nominal outside diameter.NOTE 2EccentricityThe variation in wall thickness in any one cross section of any one tube shall not exceed plus or minus 10 % of the actual(measured) average wall of that section. The actual average wall is defined as th
49、e average of the thickest and thinnest wall of that section.NOTE 3For tolerances of small diameter and light wall tube (converter sizes) see Appendix X2 (Table X2.2).Material Nominal Outside Diameter, in. (mm)Permissible VariationsAOutside Diameter, in. (mm) Wall Thickness,%+Average Wall Minimum Wall+UNS N02200, UNS N02201,and UNS N0440012 to58 (12.7 to 15.9), excl 0.005 (0.13) 0 12.5 12.5 25.0 058 to 112 (15.9 to 38.1), incl 0.005 (0.13) 0.005 (0.13) 10.0 10.0 20.0 0ove