ASTM B49-2008a Standard Specification for Copper Rod Drawing Stock for Electrical Purposes.pdf

上传人:feelhesitate105 文档编号:461366 上传时间:2018-11-25 格式:PDF 页数:7 大小:119.12KB
下载 相关 举报
ASTM B49-2008a Standard Specification for Copper Rod Drawing Stock for Electrical Purposes.pdf_第1页
第1页 / 共7页
ASTM B49-2008a Standard Specification for Copper Rod Drawing Stock for Electrical Purposes.pdf_第2页
第2页 / 共7页
ASTM B49-2008a Standard Specification for Copper Rod Drawing Stock for Electrical Purposes.pdf_第3页
第3页 / 共7页
ASTM B49-2008a Standard Specification for Copper Rod Drawing Stock for Electrical Purposes.pdf_第4页
第4页 / 共7页
ASTM B49-2008a Standard Specification for Copper Rod Drawing Stock for Electrical Purposes.pdf_第5页
第5页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: B 49 08aStandard Specification forCopper Rod Drawing Stock for Electrical Purposes1This standard is issued under the fixed designation B 49; the number immediately following the designation indicates the year of originaladoption or, in the case of revision, the year of last revision.Anu

2、mber in parentheses indicates the year of last reapproval.Asuperscriptepsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This specification covers the requirements for rod draw-i

3、ng stock in diameters from14 to 138 in. (6.4 to 35 mm)produced from electrolytic tough-pitch or oxygen-free coppersand are suitable for further fabrication into electrical conduc-tors.1.2 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathema

4、ticalconversions to SI units that are provided for information onlyand are not considered standard.1.3 The following safety hazards caveat pertains only toSection 13. This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the

5、user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 The following documents in the current issue of theBook of Standards form a part of this specification to the extentreference

6、d herein and define materials suitable for use in rodmanufacture:2.2 ASTM Standards:2B5 Specification for High Conductivity Tough-Pitch Cop-per Refinery ShapesB115 Specification for Electrolytic Copper CathodeB 170 Specification for Oxygen-Free Electrolytic CopperRefinery ShapesB 193 Test Method for

7、 Resistivity of Electrical ConductorMaterialsB 224 Classification of CoppersB 577 Test Methods for Detection of Cuprous Oxide (Hy-drogen Embrittlement Susceptibility) in CopperB 846 Terminology for Copper and Copper AlloysE8 Test Methods for Tension Testing of Metallic MaterialsE18 Test Methods for

8、Rockwell Hardness of MetallicMaterialsE29 Practice for Using Significant Digits in Test Data toDetermine Conformance with SpecificationsE53 Test Method for Determination of Copper in Unal-loyed Copper by GravimetryE 478 Test Methods for Chemical Analysis of CopperAlloys2.3 Other Document:NBS Handboo

9、k 100 Copper Wire Tables33. Terminology3.1 For definitions of general terms relating to copper andcopper alloys refer to Terminology B 846.4. Ordering Information4.1 Orders for rod under this specification shall include thefollowing information:4.1.1 ASTM designation and year of issue,4.1.2 Quantity

10、 of each size,4.1.3 Type and requirements of copper (Sections 5-10),4.1.4 Finish (Sections 9 and 10),4.1.5 Package with or without joints (see 5.3),4.1.6 Rod diameter (see 9.2),4.1.7 Inspection (Section 15),4.1.8 Package size (see 19.1), and4.1.9 Special package marking as agreed upon between theman

11、ufacturer and the purchaser (Section 19).4.2 The following requirements are optional and should bespecified in the contract or purchase order when required.4.2.1 Certification (Section 17) and4.2.2 Test Report (Section 18).5. Material and Manufacture5.1 The rod shall be fabricated from copper of suc

12、h qualityand purity that the finished product shall have the propertiesand characteristics prescribed in this specification.NOTE 1The following specifications define materials suitable for use:Specification B5, or Specification B115, or Specification B 170.1This specification is under the jurisdicti

13、on ofASTM Committee B05 on Copperand Copper Alloys and is the direct responsibility of Subcommittee B05.07 onRefined Copper.Current edition approved Nov. 1, 2008. Published December 2008. Originallyapproved in 1923. Last previous edition approved in 2008 as B 49 08.2For referenced ASTM standards, vi

14、sit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from National Technical Information Service (NTIS), 5285 PortRoyal Rd., Springfield,

15、 VA 22161, http:/www.ntis.gov.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.5.2 Copper of special qualities, forms, or types, as agreedupon between the manufacturer

16、and the purchaser and that willconform to the requirements prescribed in this specificationmay also be used.5.3 The rod coils shall be furnished in continuous lengthswith or without joints, as ordered.6. Chemical Composition6.1 Each rod type shall conform to the chemical composi-tion requirements pr

17、escribed in Table 1 for the type of copperordered (Section 4).6.2 By agreement between the manufacturer and the pur-chaser, the addition of silver up to an average of 30 troy oz pershort ton of copper (0.10 %) will be considered within thespecification, copper including silver in the chemical analys

18、is,with no individual silver analysis to exceed 35 troy oz per shortton (0.12 %). In the case of oxygen-free silver-bearing coppers,the designation OFS (oxygen-free, silver-bearing) will be usedas shown in Classification B 224 and will include the UNSNos. C10400, C10500, and C10700 as defined by the

19、 agreedsilver content.6.3 Silver-bearing tough-pitch copper corresponds to thedesignation STP (silver-bearing tough-pitch) as shown inClassification B 224 and to coppers having UNS Nos. C11300,C11400, C11500, and C11600.6.4 Oxygen ContentOxygen-free copper as describedherein is defined as a copper c

20、ontaining not in excess of0.0010 % (10 ppm) oxygen and produced without the use ofmetallic or other deoxidizers.7. Physical Property Requirements7.1 Electrical ResistivityResistivity of the copper in theannealed condition (See Note X1.1) shall not exceed thefollowing values at 20C:Type of Copper Res

21、istivity, max, at 20CAnnealed, V g/m2UNS C10100 only 0.15176 (101.00 % IACS min)All others 0.15328 (100.00 % IACS min)8. Mechanical Property Requirements8.1 Tensile TestsRod finished by hot working or annealingshall have a minimum elongation of 30 % in 10 in. (250 mm).(Note X1.2 and Test Methods E8.

22、)8.2 Torsion TestsIf torsion tests are requested, refer toNote X1.3.8.3 Embrittlement (Bend) Test:8.3.1 A test to reflect propensity towards hydrogen em-brittlement shall be performed only on oxygen-free copper.8.3.2 The specimen shall be tested in accordance with 13.6and Specification B 170.8.3.3 T

23、he specimen, prepared and tested from the OFE(oxygen-free electronic) copper (UNS C10100) listed in Table1, shall withstand without breaking into two pieces, a minimumof ten (10) reverse bends.8.3.4 The specimen, prepared and tested from the OF(oxygen-free) copper (UNS C10200) listed in Table 1, sha

24、llwithstand, without breaking into two pieces, a minimum ofeight (8) reverse bends.8.4 AnnealabilityAnnealability is not a requirement ofthis specification. However, a discussion will be found in NotesX1.4-X1.6.9. Other Requirements9.1 Surface OxideThe surface oxide film thickness shallbe determined

25、 in accordance with 13.5.9.1.1 Total thickness of the copper oxide film on cleanedcopper rod or annealed shaved rod or cold-finished rod shallnot exceed 750 (107m).9.1.2 The residual oxide film thickness on as-shaved roddoes not need to be specified.9.1.3 A surface oxide requirement is not necessary

26、 for rodordered uncleaned.9.2 DiameterThe diameter of the rod at any point shallnot vary from that specified by more than the amountsprescribed in Table 2.TABLE 1 Chemical CompositionAUNS NumberCopper TypeC11040ETPC10100OFEBC10200OFCC11000ETPCopper, min 99.90 %D99.99 %D99.95 %Eincl silver99.90 %Einc

27、l silverppm ppm ppm ppmTellurium, max 2 2 . . . . . .Selenium, max 2 3 . . . . . .Bismuth, max 1.0 1.0 . . . . . .Grouptotal,max 3 . . .Antimony, max 4 4 . . . . . .Arsenic, max 5 5 . . . . . .Tin,max 5 2 . .Lead, max 5 5 . . . . . .Iron, max 10 10 . . . . . .Nickel, max 10 10 . . . . . .Sulfur, max

28、 15 15 . . . . . .Silver, max 25 25 . . . . . .Oxygen 100650 5 max 10 max . . .Maximum allowabletotal65F. . .Cadmium, max . . . 1 . . . . . .Phosphorus, max . . . 3 . . . . . .Zinc,max . 1 . .Manganese, max . . . 0.5 . . . . . .ASee 13.1.2.BFrom B 170 Grade 1 copper or equivalent.CFrom B 170 Grade 2

29、 copper or equivalent.DBy difference. See 13.1.2 and 13.1.3.ESee 13.1.1.FNot including oxygen.TABLE 2 Permissible Variations in DiameterNominal Diameter, in. (mm)Permissible Variation, in.(mm)14 (6.4) +0.020 (+0.51)0.010 (0.25)Over14 (6.4) to34 in. (19 mm) incl. 60.015 (60.38)Over34 (19) to 1.0 in.

30、(25 mm) incl. 60.020 (60.51)Over 1.0 (25) to 138 in. (35 mm) incl. 60.030 (60.76)B4908a210. Workmanship, Finish and Appearance10.1 The rod shall be free of defects, but blemishes of anature that do not interfere with the intended application areacceptable.11. Sampling11.1 This procedure shall be use

31、d in case of dispute betweenthe manufacturer and the purchaser.11.2 One sample shall be taken from each 200 000-lb(90 000-kg) lot for resistivity, elongation, surface oxide, em-brittlement (bend) test, and chemical analysis.11.3 When a cast refinery shape has been chemicallyanalyzed and converted in

32、to rod without remelting, furtherchemical analysis shall not be required.12. Number of Tests and Retests12.1 Tests:12.1.1 Chemical AnalysisChemical composition shall bedetermined as per the element mean of the results from at leasttwo replicate analyses of the sample(s).12.1.2 Other Tests:12.1.2.1 E

33、lectrical Resistivity, Elongation, and SurfaceOxideResults shall be reported as the average obtained fromat least two test specimens, each taken from a separate testpiece where possible.12.1.2.2 Hydrogen Embrittlement Test and MicroscopicalExaminationAll specimens tested must meet the require-ments

34、of the specification.12.2 Retests:12.2.1 When requested by the manufacturer or supplier, aretest shall be permitted when results of tests obtained by thepurchaser fail to conform to the requirements of the productspecification.12.2.2 The retest shall be as directed in the product speci-fication for

35、the initial test except the number of test specimensshall be twice that normally required for the specified test.12.2.3 All test specimens shall conform to the productspecification requirement(s) in retest. Failure to conform shallbe cause for rejection.13. Test Methods13.1 Chemical Analysis:13.1.1

36、In case of dispute, determine copper content of thecoppers other than UNS C10100 and UNS C11040 in Table 1in accordance with Test Method E53.13.1.2 Analytical method for determining impurity levels ofcoppers listed in Table 1 shall be in accordance with Specifi-cation B115.13.1.3 Calculate copper co

37、ntent of UNS C10100 and UNSC11040 types by subtracting from 100 % the total impurityconcentration determined. The impurity total for UNS C10100is defined as the sum of sulfur, silver, lead, tin, bismuth,arsenic, antimony, iron, nickel, zinc, phosphorus, selenium,tellurium, manganese, cadmium, and ox

38、ygen present in thesample. The impurity total for UNS C11040 is defined as thesum of sulfur, silver, lead, tin, bismuth, arsenic, antimony, iron,nickel, selenium, tellurium, and oxygen present in the sample.13.1.4 The test methods annex of Specification B 170should be referenced for the oxygen-free

39、coppers. Test MethodE 478 should be referenced for the determination of silver-bearing alloys permitted under this specification.13.1.5 Oxygen content is determined on cleaned coppersamples using a suitable laboratory apparatus or a commercialinstrument designed specifically for this purpose. An AST

40、Mmethod has not been developed.13.2 ElongationDetermine the elongation as the perma-nent increase in length, caused by breaking of the rod intension, measured between gage marks placed originally 10 in.(250 mm) apart upon the test specimen (Note X1.2). Thefracture shall be between gage marks and not

41、 closer than 1 in.(25 mm) to either gage mark.13.3 Electrical Resistivity:13.3.1 At the option of the manufacturer, electrical resistiv-ity may be determined in accordance with 13.3.2 or 13.3.3.However, in case of dispute, 13.3.2 shall apply.13.3.2 Make resistance measurements (Note X1.3) on speci-m

42、ens of the rod after cleaning and processing down to adiameter of approximately 0.080 in. (2.0 mm) and annealing atapproximately 932F (500C) for 30 min. Other equivalentannealing methods may be used. Test specimens processed toa diameter other than 0.080 in. may be used if agreed uponbetween the man

43、ufacturer and the purchaser.13.3.3 Resistance measurements may be determined onspecimens of the rod after cleaning, but without furtherprocessing and annealing. However, in the event of failure of arod specimen to conform to the criteria of 7.1, a retest ispermitted using the procedure of 13.3.2.13.

44、3.4 Determine the electrical resistivity in accordancewith Test Method B 193 except that when the option of 13.3.3is elected, the plus and minus tolerance for the cross-sectionalarea as specified in Test Method B 193 shall not apply.TABLE 3 Equivalent Resistivity ValuesAConductivity at 68F (20C), %

45、IACS 100.00 101.00V lb/mile2875.20 866.53V g/m20.153 28 0.151 76V c mil/ft 10.371 10.268V mm2/m 0.017 241 0 0.017 070V in. 0.678 79 0.672 07V cm 1.7241 1.7070AThe equivalent resistivity values for 100 % IACS (soft copper) were eachcomputed from the fundamental IEC value (1/58 V mm2/m) using conversi

46、onfactors each accurate to at least seven significant figures.FIG. 1 Schematic Illustration Showing Electrolytic Reduction TestMethodB4908a313.4 DiameterMeasure the diameter of the rod with asuitable measuring device, micrometer, caliper or other, read-ing at least to the nearest 0.001 in. (0.02 mm)

47、.13.5 Surface Oxide:13.5.1 Determine the thickness and type of unreduced oxidefilms remaining on the surface of rod after cleaning by anelectrolytic reduction method. This test is performed by reduc-ing the surface oxide(s) to copper in an electrolytic cell.4Asshown by the schematic diagram in Fig.

48、1, the test sample ismade cathodic with respect to an anode, which shall be madefrom a platinum wire or an equivalent inert electrode. Supplycurrent from a dc power supply or a coulometer. Although 10milliampere (mA) is a typical value of current, it is best to haveequipment capable of operating in

49、the range of 1 to 20 mA.Theelectrolyte shall be a 0.1M solution of sodium carbonate andshall cover at least 4 in. (101.6 mm) of the test sample. Beforetesting, clean each rod sample of oil or grease using acetone oran equivalent solvent.13.5.2 Each of the oxides found on copper, namely cuprousand cupric, are reduced sequentially to copper at differentreduction potentials, and the voltages are to be recorded againsttime during the entire test. When the individual reactionsbetween the oxides and hydrogen ions are complete, gaseoushydroge

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1