ASTM C1099-2007 Standard Test Method for Modulus of Rupture of Carbon-Containing Refractory Materials at Elevated Temperatures《升温时含碳耐火材料的断裂模数用标准试验方法》.pdf

上传人:appealoxygen216 文档编号:463355 上传时间:2018-11-27 格式:PDF 页数:3 大小:62.35KB
下载 相关 举报
ASTM C1099-2007 Standard Test Method for Modulus of Rupture of Carbon-Containing Refractory Materials at Elevated Temperatures《升温时含碳耐火材料的断裂模数用标准试验方法》.pdf_第1页
第1页 / 共3页
ASTM C1099-2007 Standard Test Method for Modulus of Rupture of Carbon-Containing Refractory Materials at Elevated Temperatures《升温时含碳耐火材料的断裂模数用标准试验方法》.pdf_第2页
第2页 / 共3页
ASTM C1099-2007 Standard Test Method for Modulus of Rupture of Carbon-Containing Refractory Materials at Elevated Temperatures《升温时含碳耐火材料的断裂模数用标准试验方法》.pdf_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: C 1099 07Standard Test Method forModulus of Rupture of Carbon-Containing RefractoryMaterials at Elevated Temperatures1This standard is issued under the fixed designation C 1099; the number immediately following the designation indicates the year oforiginal adoption or, in the case of re

2、vision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the modu-lus of rupture of carbon-containing refract

3、ories at elevatedtemperatures in air.1.2 The values stated in inch-pound units and degreesFahrenheit are to be regarded as standard. The values given inparentheses are for information only.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is

4、 theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Section 5.2. Referenced Documents2.1 ASTM Standards:2C 583 Test Method for Modulus of Rupt

5、ure of RefractoryMaterials at Elevated TemperaturesE 220 Test Method for Calibration of Thermocouples ByComparison Techniques2.2 ISO Standard:ISO Recommendation 5013 Determination of the HotModulus of Rupture of Shaped and Unshaped Dense andInsulating Refractory Products33. Significance and Use3.1 T

6、he modulus of rupture of carbon-containing refracto-ries at elevated temperatures has become accepted as a usefulmeasurement in quality control testing and in research anddevelopment. These measurements are also used to determinethe suitability of particular products for various applicationsand to d

7、evelop specifications. The sample may undergo someoxidation during the test.3.2 In 1988, ruggedness testing was conducted on this testprocedure. The following variables were studied:3.2.1 Testing temperature (2525 (1385) versus 2575F(1413C),3.2.2 Air atmosphere versus argon atmosphere in the fur-nac

8、e,3.2.3 Hold time prior to breaking the sample (12 versus 18min), and3.2.4 Loading rate on the sample (175 (778) versus 350lb/min (1556 N/min).3.3 Resin bonded magnesia-carbon brick containing ap-proximately 17 % carbon after coking where tested in twoseparate ruggedness tests. Metal-free brick were

9、 tested in thefirst ruggedness test, while aluminum-containing brick weretested in the second. Results were analyzed at a 95 % confi-dence level.3.4 For the metal-free brick, the presence of an argonatmosphere and hold time had statistically significant effects onthe modulus of rupture at 2550F (140

10、0C). The argon atmo-sphere yielded a lower modulus of rupture. The samples testedin air had a well-sintered decarburized zone on the exteriorsurfaces, possibly explaining the higher moduli of rupture. Thelonger hold time caused a lower result for the metal-free brick.3.5 For the aluminum-containing

11、brick, testing temperature,the presence of an argon atmosphere, and loading rate hadstatistically significant effects on the modulus of rupture at2550F (1400C). The higher testing temperature increased themeasured result, the presence of an argon atmosphere loweredthe result, and the higher loading

12、rate increased the result.4. Apparatus4.1 Electrically-Heated FurnaceAn electrically heatedfurnace should be used. The furnace will contain an airatmosphere.4.2 Lower Bearing Edges, at least one pair, made fromvolume-stable refractory material (Note 1) shall be installed inthe furnace on 5-in. (127-

13、mm) centers.1This test method is under the jurisdiction of ASTM Committee C08 onRefractories and is the direct responsibility of Subcommittee C08.01 on Strength.Current edition approved March 1, 2007. Published April 2007. Originallyapproved in 1992. Previous edition approved in 2002 as C 1099 92 (2

14、002).2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from American National Standards Institute (A

15、NSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.4.3 Thrust Column, containing the top bearing edge that ismade from the same volume-stable refractory material use

16、d forthe lower bearing edges, shall extend outside the furnace wheremeans are provided for applying a load.4.3.1 The lower bearing edges and the bearing end of thesupport column shall have rounded bearing surfaces havingabout a14-in. (6 mm) radius (Note 2). The lower bearingsurfaces may be made adju

17、stable, but must attain the standardspan of 5 6332 in. (1276 2 mm). The length of the lowerbearing surfaces shall exceed the specimen width by about14in. The load shall be applied to the upper bearing edge by anysuitable means. Instrumentation for measuring the load shall beaccurate to 1 %.4.3.2 The

18、 thrust column shall be maintained in verticalalignment and all bearing surfaces shall be parallel in bothhorizontal directions.NOTE 1A minimum of 90 % alumina content is recommended as asuitable refractory.NOTE 2All bearing surfaces should be checked periodically to main-tain a round surface.4.4 It

19、 is recommended that the furnace temperature becontrolled with calibrated platinum-rhodium/platinum thermo-couples connected to a program-controller recorder (seeMethod E 220). A thermocouple protection tube is advisable.Temperature differential within the furnace shall not be morethan 620F (11C), b

20、ut the controlling thermocouple shall beplaced within12 in. (13 mm) of the geometric center of a sideface of the test specimen when positioned on the bearing edges.5. Hazards5.1 Standard safety precautions that are used in high tem-perature testing should be followed for this test method. Thiswould

21、include use of protective clothing and eyeglasses whenhandling hot samples. In addition, these tests should be run inan area that has adequate ventilation since there is potential foroxidation of carbon to form carbon monoxide. There may alsobe organic volatiles present from pyrolysis of pitch and r

22、esin.6. Sampling6.1 The sample shall consist of five specimens, each takenfrom five brick or shapes.7. Test Specimens7.1 The standard test specimen shall be 1 6132 by 1 6132by approximately 6 in. (25 6 0.8 by 25 6 0.8 by approxi-mately 152 mm). Specimens cut from brick shall have at leastone origina

23、l brick surface perpendicular to the pressed direc-tion. This original brick surface will be the surface in tensionduring testing. If cut from shapes, the specimens shall be takenparallel to the longest dimension. For irregular shapes, all fourlong surfaces of the specimen may be cut faces. Note thi

24、s in thereport.7.2 The test specimens shall be prepared from brick as theyare to be used. They shall not be coked prior to testing.7.3 Opposite faces of the specimen shall be parallel, andadjacent faces shall be perpendicular.7.4 Measure the width and depth of the test specimen atmidspan to the near

25、est 0.01 in. (0.3 mm).8. Procedure8.1 Preheat the furnace to the test temperature and allow itto soak until thermal equilibrium is established.8.2 Specify the test temperature as 2550 6 10F (1400 66C). Note any deviation from 2550F in the report.8.3 Once thermal equilibrium is established, open the

26、fur-nace door, place one specimen on the lower bearing edgeskeeping the original brick surface as the tension surface, andclose the door as quickly as possible.8.4 Hold the sample for 15 min 6 30 s. Bring the topbearing edge to bear at mid-span on the specimen, ensureproper alignment of the bearing

27、surfaces, and apply pressurethrough the loading mechanism until failure of the specimenoccurs. The rate of application of the load on the sample shallbe 175 6 17.5 lbf (778.8 N)/min. The resulting rate of increasein bending stress for the standard 1 by 1 by 6 in. (25 by 25 by152 mm) specimen is 1312

28、.5 6 131 psi (9.05 6 0.9 MPa)/min.48.5 Since opening the furnace door as the specimen isinserted will lower the temperature of the furnace, note theamount of temperature loss, as well as the time it takes for thefurnace to reestablish its equilibrium temperature.8.6 Once the sample has been broken,

29、open the furnacedoor, remove the broken sample from the lower bearing edges,and place another sample on the lower bearing edges for testingin an identical manner.9. Calculation9.1 Calculate the modulus of rupture (MOR) for eachrectangular specimen as follows:MOR 5 3PL/2bd2where:MOR = modulus of rupt

30、ure, psi or MPa,P = concentrated load at rupture, lbf or N,L = span between supports, in. or mm,b = breadth or width of specimen, in. or mm, andd = depth of specimen, in. or mm.10. Report10.1 Report the following information:10.1.1 The test temperature,10.1.2 The five individual test results,10.1.3

31、The average modulus of rupture and standard devia-tion in pounds-force per square inch (or megapascals) for thefive specimens, and10.1.4 List of deviations.11. Precision and Bias511.1 PrecisionInterlaboratory Study: An interlaboratorytest program between four laboratories was completed in 1989.Each

32、laboratory received five brick measuring 9 by 4.5 by 3 in.for each of four different materials. The four materials were:4This rate is 0.151 MPa/s, which is in agreement with the stress rate in ISORecommendation 5013.5Supporting data have been filed at ASTM International Headquarters and maybe obtain

33、ed by requesting RR: CO8-1010.C 1099 072tar-bonded magnesia brick containing about 5 % residualcarbon with no metallic additives; resin-bonded magnesite-carbon brick containing about 20 % residual carbon and nometallic additives; resin-bonded magnesite-carbon brick con-taining about 20 % residual ca

34、rbon and an addition of poweredaluminum; and resin-bonded magnesite-carbon brick contain-ing about 10 % residual carbon and no metallic additives.11.2 RepeatabilityThe maximum permissible differencedue to test error between two test results obtained by oneoperator on the same material is given by th

35、e repeatabilityinterval and the relative repeatability interval (coefficient ofvariation). The 95 % repeatability intervals are given in Table1. Two test results that do not differ by more than therepeatability interval will be considered to be from the samepopulation, and, conversely, two test resu

36、lts that do differ bymore than the repeatability interval will be considered to befrom different populations.11.3 ReproducibilityThe maximum permissible differ-ence due to test error between two test results obtained by twooperators in different laboratories on the same type of materialusing the sam

37、e type of test equipment is given by thereproducibility interval and relative reproducibility interval(coefficient of variation). The 95 % reproducibility intervalsare given in Table 1. Two test results that do not differ by morethan the reproducibility interval will be considered to be fromthe same

38、 population and, conversely, two test results that dodiffer by more than the reproducibility interval will be consid-ered to be from different populations.11.4 BiasThis test method does not lend itself to astatement of bias.12. Keywords12.1 carbon-containing; modulus of rupture; refractories;strengt

39、hASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, ar

40、e entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standa

41、rdsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Commit

42、tee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress

43、 or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).TABLE 1 Relative PrecisionMaterialNumberAverageX, psiStandardWithin,Sr, psiDeviationBetween,SR, psiRepeat-abilityIntervalr, psiReproduc-ibilityIntervalR, psiCoefficient of Variation RelativeRepeat-ability, r,%RelativeReproduc-ibility, R,%WithinLab,Vr,%BetweenLabs,VR,%1 343 60.4 63.8 169 179 17.6 18.6 49.3 52.22 522 33.8 46.3 94.6 130 6.48 8.87 18.1 24.93 1400 122 109 341 341 8.71 7.79 24.4 24.44 390 81.9 81.9 229 229 21.0 21.0 58.7 58.7C 1099 073

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1