ASTM C204-2011 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus《用透气性仪器测定硅水凝水泥细度的标准试验方法》.pdf

上传人:roleaisle130 文档编号:466002 上传时间:2018-11-27 格式:PDF 页数:9 大小:182.86KB
下载 相关 举报
ASTM C204-2011 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus《用透气性仪器测定硅水凝水泥细度的标准试验方法》.pdf_第1页
第1页 / 共9页
ASTM C204-2011 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus《用透气性仪器测定硅水凝水泥细度的标准试验方法》.pdf_第2页
第2页 / 共9页
ASTM C204-2011 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus《用透气性仪器测定硅水凝水泥细度的标准试验方法》.pdf_第3页
第3页 / 共9页
ASTM C204-2011 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus《用透气性仪器测定硅水凝水泥细度的标准试验方法》.pdf_第4页
第4页 / 共9页
ASTM C204-2011 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus《用透气性仪器测定硅水凝水泥细度的标准试验方法》.pdf_第5页
第5页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: C204 11American Association StateHighway and Transportation Officials StandardAASHTO No.: T 153Standard Test Methods forFineness of Hydraulic Cement by Air-PermeabilityApparatus1This standard is issued under the fixed designation C204; the number immediately following the designation in

2、dicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers determination o

3、f the fineness ofhydraulic cement, using the Blaine air-permeability apparatus,in terms of the specific surface expressed as total surface areain square centimetres per gram, or square metres per kilogram,of cement. Two test methods are given: Test Method A is theReference Test Method using the manu

4、ally operated standardBlaine apparatus, while Test Method B permits the use ofautomated apparatus that has in accordance with the qualifica-tion requirements of this test method demonstrated acceptableperformance. Although the test method may be, and has been,used for the determination of the measur

5、es of fineness ofvarious other materials, it should be understood that, ingeneral, relative rather than absolute fineness values areobtained.1.1.1 This test method is known to work well for portlandcements. However, the user should exercise judgement indetermining its suitability with regard to fine

6、ness measure-ments of cements with densities, or porosities that differ fromthose assigned to Standard Reference Material No. 114.1.2 The values stated in SI units are to be regarded as thestandard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its u

7、se. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2A582/A582M Specification for Free-Machining StainlessSteel BarsC670 Practi

8、ce for Preparing Precision and Bias Statementsfor Test Methods for Construction MaterialsE832 Specification for Laboratory Filter Papers2.2 Other Document:No. 114 National Institute of Standards and TechnologyStandard Reference Material3BS 4359: 1971 British Standard Method for the Determina-tion of

9、 Specific Surface of Powders: Part 2: Air Perme-ability Methods4TEST METHOD A: REFERENCE METHOD3. Apparatus3.1 Nature of ApparatusThe Blaine air-permeability ap-paratus consists essentially of a means of drawing a definitequantity of air through a prepared bed of cement of definiteporosity. The numb

10、er and size of the pores in a prepared bed ofdefinite porosity is a function of the size of the particles anddetermines the rate of airflow through the bed. The apparatus,illustrated in Fig. 1, shall consist specifically of the partsdescribed in 3.2-3.8.3.2 Permeability CellThe permeability cell sha

11、ll consistof a rigid cylinder 12.70 6 0.10 mm in inside diameter,constructed of austenitic stainless steel. The interior of the cellshall have a finish of 0.81 m (32 in.). The top of the cell shallbe at right angles to the principal axis of the cell. The lowerportion of the cell must be able to form

12、 an airtight fit with theupper end of the manometer, so that there is no air leakagebetween the contacting surfaces. A ledge12 to 1 mm in widthshall be an integral part of the cell or be firmly fixed in the cell55 6 10 mm from the top of the cell for support of theperforated metal disk. The top of t

13、he permeability cell shall befitted with a protruding collar to facilitate the removal of thecell from the manometer.NOTE 1Specification A582/A582M Type 303 stainless steel (UNSdesignation S30300) has been found to be suitable for the construction ofthe permeability cell and the plunger.3.3 DiskThe

14、disk shall be constructed of noncorrodingmetal and shall be 0.9 6 0.1 mm in thickness, perforated with30 to 40 holes 1 mm in diameter equally distributed over its1This test method is under the jurisdiction of ASTM Committee C01 on Cementand is the direct responsibility of Subcommittee C01.25 on Fine

15、ness.Current edition approved June 1, 2011. Published August 2011. Originallyapproved in 1946. Last previous edition approved in 2007 as C204 07. DOI:10.1520/C0204-11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual

16、Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from National Institute of Standards and Technology (NIST), 100Bureau Dr., Stop 1070, Gaithersburg, MD 20899-1070, http:/www.nist.gov.4Available from British Standards Institute (BSI)

17、, 389 Chiswick High Rd.,London W4 4AL, U.K., http:/www.bsi-.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.area. The disk shall fit the inside of the cell snugly. The

18、 centerportion of one side of the disk shall be marked or inscribed ina legible manner so as to permit the operator always to placethat side downwards when inserting it into the cell. Themarking or inscription shall not extend into any of the holes,nor touch their peripheries, nor extend into that a

19、rea of the diskthat rests on the cell ledge.3.4 PlungerThe plunger shall be constructed of austeniticstainless steel and shall fit into the cell with a clearance of notmore than 0.1 mm. The bottom of the plunger shall sharplymeet the lateral surfaces and shall be at right angles to theprincipal axis

20、. An air vent shall be provided by means of a flat3.0 6 0.3 mm wide on one side of the plunger. The top of theplunger shall be provided with a collar such that when theplunger is placed in the cell and the collar brought in contactwith the top of the cell, the distance between the bottom of theplung

21、er and the top of the perforated disk shall be 15 6 1 mm.3.5 Filter PaperThe filter paper shall be medium reten-tive, corresponding to Type 1, Grade B, in accordance withSpecification E832. The filter paper disks shall be circular, withsmooth edges, and shall have the same diameter (Note 2)astheinsi

22、de of the cell.NOTE 2Filter paper disks that are too small may leave part of thesample adhering to the inner wall of the cell above the top disk. When toolarge in diameter, the disks have a tendency to buckle and cause erraticresults.3.6 ManometerThe U-tube manometer shall be con-structed according

23、to the design indicated in Fig. 1, usingnominal 9-mm outside diameter, standard-wall, glass tubing.The top of one arm of the manometer shall form an airtightconnection with the permeability cell. The manometer armconnected to the permeability cell shall have a midpoint lineetched around the tube at

24、125 to 145 mm below the top sideFIG. 1 Blaine Air-Permeability ApparatusC204 112outlet and also others at distances of 15 6 1 mm, 70 6 1 mm,and 110 6 1 mm above that line.Aside outlet shall be providedat 250 to 305 mm above the bottom of the manometer for usein the evacuation of the manometer arm co

25、nnected to thepermeability cell. A positive airtight valve or clamp shall beprovided on the side outlet not more than 50 mm from themanometer arm. The manometer shall be mounted firmly andin such a manner that the arms are vertical.3.7 Manometer LiquidThe manometer shall be filled tothe midpoint lin

26、e with a nonvolatile, nonhygroscopic liquid oflow viscosity and density, such as dibutyl phthalate (dibutyl1,2-benzene-dicarboxylate) or a light grade of mineral oil. Thefluid shall be free of debris.3.8 TimerThe timer shall have a positive starting andstopping mechanism and shall be capable of bein

27、g read to thenearest 0.5 s or less. The timer shall be accurate to 0.5 s or lessfor time intervals up to 60 s, and to 1 % or less for timeintervals of 60 to 300 s.4. Calibration of Apparatus4.1 SampleThe calibration of the air permeability appa-ratus shall be made using the current lot of NIST Stand

28、ardReference Material No. 114. The sample shall be at roomtemperature when tested.4.2 Bulk Volume of Compacted Bed of PowderDeterminethe bulk volume of the compacted bed of powder by physicalmeasurement or by the mercury displacement method asfollows:4.2.1 Bulk Volume Determination by PhysicalMeasur

29、ementPlace two filter papers in the permeability cell.Use a rod slightly smaller than the diameter of the cell to pressdown the edges of the filter paper flat on the perforated disk.Determine the dimensions of the permeability cell, in cm, usinga measuring device readable to 0.001 cm. Measure the in

30、sidediameter of the permeability cell near the perforated disk.Measure the depth of the cell and the length of the plunger.Take three measurements of each dimension and use theaverage value of each dimension to calculate the bulk volumeas follows:V 5pr2h (1)where:V = bulk volume occupied by sample,

31、cm3,r = diameter cell/2, cm, andh = cell depth plunger length, cm.4.2.2 Bulk Volume Determination by the Mercury Displace-ment MethodPlace two filter paper disks in the permeabilitycell, pressing down the edges, using a rod having a diameterslightly smaller than that of the cell, until the filter di

32、sks are flaton the perforated metal disk; then fill the cell with mercury,ACS reagent grade or better, removing any air bubbles adher-ing to the wall of the cell. Use tongs when handling the cell. Ifthe cell is made of material that will amalgamate with mercury,the interior of the cell shall be prot

33、ected by a very thin film ofoil just prior to adding the mercury. Level the mercury with thetop of the cell by lightly pressing a small glass plate against themercury surface until the glass is flush to the surface of themercury and rim of the cell, being sure that no bubble or voidexists between th

34、e mercury surface and the glass plate.Remove the mercury from the cell and measure and record themass of the mercury. Remove one of the filter disks from thecell. Using a trial quantity of 2.80 g of cement (Note 3)compress the cement (Note 4) in accordance with 4.5 with onefilter disk above and one

35、below the sample. Into the unfilledspace at the top of the cell, add mercury, remove entrapped air,and level off the top as before. Remove the mercury from thecell and measure and record the mass of the mercury.4.2.3 Calculate the bulk volume occupied by the cement tothe nearest 0.005 cm3as follows:

36、V 5 WA2 WB!/D (2)where:V = bulk volume of cement, cm3,WA= grams of mercury required to fill the cell, no cementbeing in the cell,WB= grams of mercury required to fill the portion of thecell not occupied by the prepared bed of cement inthe cell, andD = density of mercury at the temperature of test,Mg

37、/m3(see Table 1).4.2.4 Make at least two determinations of bulk volume ofcement, using separate compactions for each determination.The bulk volume value used for subsequent calculations shallbe the average of two values agreeing within 60.005 cm3.Note the temperature in the vicinity of the cell and

38、record at thebeginning and end of the determination.NOTE 3It is not necessary to use the standard sample for the bulkvolume determination.NOTE 4The prepared bed of cement shall be firm. If too loose or if thecement cannot be compressed to the desired volume, adjust the trialquantity of cement used.4

39、.3 Preparation of SampleEnclose the contents of a vialof the standard cement sample in a jar, approximately 120 cm3(4 oz), and shake vigorously for 2 min to fluff the cement andbreak up lumps or agglomerates. Allow the jar to standunopened for a further 2 min, then remove the lid and stirgently to d

40、istribute throughout the sample the fine fraction thathas settled on the surface after fluffing.4.4 Mass of SampleThe mass of the standard sample usedfor the calibration test shall be that required to produce a bedof cement having a porosity of 0.500 6 0.005, and shall becalculated as follows:W 5rV1

41、 2! (3)TABLE 1 Density of Mercury, Viscosity of Air (h), and = h atGiven TemperaturesRoomTemperature, CDensity ofMercury,Mg/m3Viscosity of Air, hPas=h18 13.55 17.98 4.2420 13.55 18.08 4.2522 13.54 18.18 4.2624 13.54 18.28 4.2826 13.53 18.37 4.2928 13.53 18.47 4.3030 13.52 18.57 4.3132 13.52 18.67 4.

42、3234 13.51 18.76 4.33C204 113where:W = grams of sample required,r = density of test sample (for portland cement a value of3.15 Mg/m3or 3.15 g/cm3shall be used),V = bulk volume of bed of cement, cm3, as determined inaccordance with 4.2, and = desired porosity of bed of cement (0.500 6 0.005)(Note 5).

43、NOTE 5The porosity is the ratio of volume of voids in a bed of cementto the total or bulk volume of the bed, V.4.5 Preparation of Bed of CementSeat the perforated diskon the ledge in the permeability cell, inscribed or marked facedown. Place a filter paper disk on the metal disk and press theedges d

44、own with a rod having a diameter slightly smaller thanthat of the cell. Measure the mass to the nearest 0.001 g thequantity of cement determined in accordance with 4.4 andplace in the cell. Tap the side of the cell lightly in order to levelthe bed of cement. Place a filter paper disk on top of the c

45、ementand compress the cement with the plunger until the plungercollar is in contact with the top of the cell. Slowly withdraw theplunger a short distance, rotate about 90, repress, and thenslowly withdraw. Use of fresh paper filter disks is required foreach determination.4.6 Permeability Test:4.6.1

46、Attach the permeability cell to the manometer tube,making certain that an airtight connection is obtained (Note 6)and taking care not to jar or disturb the prepared bed of cement.4.6.2 Slowly evacuate the air in the one arm of the manom-eter U-tube until the liquid reaches the top mark, and then clo

47、sethe valve tightly. Start the timer when the bottom of themeniscus of the manometer liquid reaches the second (next tothe top) mark and stop when the bottom of the meniscus ofliquid reaches the third (next to the bottom) mark. Note thetime interval measured and record in seconds. Note thetemperatur

48、e of test and record in degrees Celsius.4.6.3 In the calibration of the instrument, make at least threedeterminations of the time of flow on each of three separatelyprepared beds of the standard sample (Note 7). The calibrationshall be made by the same operator who makes the finenessdetermination.NO

49、TE 6A little stopcock grease should be applied to the standardtaper connection. The efficiency of the connection can be determined byattaching the cell to the manometer, stoppering it, partially evacuating theone arm of the manometer, then closing the valve. Any continuous drop inpressure indicates a leak in the system.NOTE 7The sample may be refluffed and reused for preparation of thetest bed, provided that it is kept dry and all tests are made within4hofthe opening of the sample.4.7 RecalibrationThe apparatus shall be recalibrated(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1