1、Designation: C 357 07 (Reapproved 2009)1Standard Test Method forBulk Density of Granular Refractory Materials1This standard is issued under the fixed designation C 357; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of la
2、st revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEUnits usage was updated in April 2009.1. Scope1.1 This test method covers a procedure for determining thebulk density of granul
3、ar refractory materials, commercialproducts which usually have particles that are retained on a0.265-in. (6.7-mm) or coarser sieve.NOTE 1This test method is not suitable for materials that hydrate inboiling water.1.2 UnitsThe values stated in inch-pound units are to beregarded as standard. The value
4、s given in parentheses aremathematical conversions to SI units that are provided forinformation only and are not considered standard.1.2.1 ExceptionsIn Sections 4, 7, and 8, the apparatusused is only available in SI units.1.3 This standard does not purport to address all of thesafety concerns, if an
5、y, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E11 Specification for Wire Cloth and Sieves for Te
6、stingPurposes3. Significance and Use3.1 Granular refractory materials may be either refractorygrain raw materials that are used in the manufacture of finishedrefractory products, or bulk granular refractory materials thatare sold, with or without some degree of processing, torefractory consumers for
7、 various uses. In either case, charac-terizing the properties of a granular refractory material isessential in evaluating its quality or consistency of quality andin determining suitability for end use. One of the importantproperties is bulk density because of its relationship to endproduct quality,
8、 usage, and performance.3.2 The refractories producer can use this test method as oneof the quality-control tests for his manufactured or minedrefractory grain raw materials or for evaluating potentialrefractory grain raw materials.3.3 For the refractories consumer, the principal use of thistest met
9、hod is in the evaluation of the quality or the consistencyof quality of the granular material in purchased refractorymixes or in bulk granular refractory materials used by theconsumer.3.4 This is a primary test method, and thus is suitable for usein specifications, quality control, and research and
10、develop-ment. It can also serve as a referee test method in purchasingcontracts or agreements and as a base for development of morerapid, secondary test methods for use in quality control onmanufactured refractory raw materials.3.5 Fundamental assumptions inherent in this test methodare that the sam
11、ple is representative of the material in general,the particle size of the sample is within the range specified bythe test method, the material is not readily hydratable, and thesize and quantity of pores in the material permits removal ofsurface water without drainage from the pores themselves.Devia
12、tion from any of these assumptions negates the useful-ness of the test results.3.6 In interpreting the results of this test method, it must berecognized that the specific gravity of the material as well asthe porosity affects the value obtained for bulk density. Thus,comparisons of results should on
13、ly be made between likematerials or with full recognition of inherent differencesbetween the materials being compared.4. Apparatus4.1 Laboratory Jaw Crusher or Rolls, for crushing samplesto pass a 0.265-in. (6.7-mm) sieve.4.2 Standard Sieves, 0.265-in. and No. 8 (2.36-mm) withPan and Cover (Note 2)T
14、he sieves shall conform to Speci-fication E11.1This test method is under the jurisdiction of the ASTM Committee C08 onRefractories and is the direct responsibility of Subcommittee C08.03 on PhysicalProperties.Current edition approved March 1, 2009. Published April 2009. Originallyapproved in 1955. L
15、ast previous edition approved in 2007 as C 35707.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright A
16、STM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.4.2.1 The coarser sieve may be the No. 4 (4.75 mm) and thefiner sieve may be the No. 6 (3.35 mm) or No. 12 (1.70 mm),if tests indicate that the range in particle size is not critical.NOTE 2The 0.26
17、5-in., No. 4, No. 6, No. 8, and No. 12 ASTM sievesare equivalent to 3, 4, 6, 8, and 10-mesh, respectively, of the TylerStandard Series.34.3 Drying Oven, adjustable to 220 to 230F (105 to 110C).4.4 Riffle, with six or more12 to34-in. (13 to 19-mm)troughs with pans, or a smooth plate at least 15 in. (
18、381 mm)square and a 300-mm blade spatula or trowel for samplequartering.4.5 Balance, capacity 200 g, sensitivity 0.01 g.4.6 Hot Plate.4.7 Beakers, 250 mL.4.8 Buret, 50 mL, calibrated to 0.1 mL.4.9 Le Chatelier Specific Gravity Bottle, 250 mL capacity.5. Test Samples5.1 The sample consists of at leas
19、t 5.5 lb (2.5 kg) carefullyselected to represent the material being tested.5.2 When possible, take three or more such samples torepresent proportionate parts of the material, and test theseseparately.6. Preparation of Test Sample6.1 Crush each sample when necessary and screen dry topass the 0.265-in
20、. (6.7-mm) sieve and be retained on the No. 8(2.36-mm) mesh sieve (Note 2). Take care to adjust the crusherso as to obtain some particles that will be retained on the0.265-in. sieve, thereby increasing the amount retained on thefiner sieve. The portion not passing the coarser sieve may berecrushed u
21、ntil it passes. The sieving may be carried out in amechanical device or by hand.6.2 After the sieving, treat various types of materials asfollows:6.2.1 With material that has been calcined and cooled notmore than 2 h prior to testing, blow free of dust with clean air(moisture- and oil-free).6.2.2 Wa
22、sh other materials in a stream of tap water for atleast 5 min or until all dust is removed. Oven-dry overnight at220 to 230F (105 to 110C).7. Procedure7.1 Divide the sample by quartering or riffling to obtain aportion for testing of about 25 cm3in bulk and weighingbetween 60 and 90 g, depending upon
23、 the bulk density. Weighthis sample to the nearest 10 mg and record as the dry weight.7.2 Place the test sample in a beaker of water and boil for 1h during which the grains shall be completely covered withwater. Cool the sample to room temperature by running coldwater into the beaker or by a similar
24、 method.7.3 Rinse the clean buret (Note 3) thoroughly and introduceapproximately 25 mL of distilled water at room temperature.Allow it to stand until drops of water on the sides settle into thebody of liquid.NOTE 3Clean the burette or the Le Chatelier Specific Gravity Bottlefrequently with a good cl
25、eaning solution such as liquid soap to ensurecomplete drainage without drops of water forming on the inside walls.7.3.1 Alternately rinse the clean specific gravity bottle andfill with distilled water at room temperature as close to the 0mark as possible. Allow it to stand until drops of water on th
26、esides settle into the body of liquid. Take a clean piece of spongethat is hooked to a stainless steel or copper wire and is longenough to reach to the bottom of the straight section. Insert thesponge into the bottle and with circular motion try to mop upany excess water from the sides. Make sure th
27、at the spongesurface does not touch the top of the water meniscus. Recordthe level of water in the bottle to the nearest 0.05 mL indicatingif the level is below or above the 0 mark. If the level is at 0mark then record that.7.4 Totally saturate blotting cloth (smooth linen or lint freecotton) with w
28、ater, then gently wring out to a no-drip condi-tion. Spread out damp cloth (landscape orientation) and pourwet grain carefully onto cloth, with no loss of particles. With asmall metal spatula, spread grain over left half of cloth to asingle grain layer. Fold right half of cloth over top of grain and
29、gently pat to blot, without abrading any grain edges if possible.Open cloth and, using edges, roll grain into center, then ontoleft half of cloth; repeat these steps as necessary until grainshave lost their sheen and no grains are adhering together. Careshould be taken to avoid excessive blotting th
30、at will induceerror by withdrawing water from the pores of the specimen.Open cloth and roll grain into center, using metal spatula toassist in grain transfer.7.5 Record the water meniscus level in the buret to thenearest 0.05 mL. Pour grains into the buret and shake so as tocause the grains and drop
31、s of water to submerge into the water,with no air bubbles attached. Read the new position on themeniscus to the nearest 0.05 mL without delay and record thedifference between the first and second readings as the volumeof the grains.7.5.1 Alternately pour grains into the specific gravity bottleslowly
32、 and shake slightly so as to cause the grains and drops ofwater to submerge into the water, with no air bubbles attached.Read the new position on the meniscus to the nearest 0.05 mLwithout delay. If the original reading was above 0 then subtractthat from the second reading. If the original reading w
33、as below0 then add that to the second reading to obtain the volume ofthe grains.7.6 Test materials that may hydrate in boiling water forignition loss, to learn whether hydration has taken place. Usetwo portions of the sample, one taken immediately beforeboiling and the second after the volume measur
34、ement in theburet.8. Report8.1 State in the report how the sample (or samples) wastaken and the grain size limits employed. Divide the dry weightof the sample by the volume and report the bulk density as3World Screening, Suite 30148, Huntsville, AL 35802, Tel: 800-749-7999;Macon Wire, 2913 Joycliff
35、Road, Macon, GA 31211, Tel: 800-768-9155; GilsonCompany, P.O. Box 200, Lewis Center, OH 43035, Tel 800-444-1508, www.glo-; Fisher Scientific, 2000 Park Lane, Pittsburgh, PA 15275, Tel.4124908300, .C 357 07 (2009)12megagrams per cubic metre. If more than one sample wastested, state the number and rep
36、ort the average value as well asthe range between the highest and lowest values obtained.8.2 If the loss on ignition has been determined in accor-dance with 7.6, report the values for dry and volume-testedmaterial. When the loss for the boiled material is higher thanthat of the dry material by more
37、than 0.50 %, the results shallbe discarded and the test method considered inapplicable.9. Precision and Bias9.1 Interlaboratory DataAn interlaboratory study wasconducted in 1990 in which a sample of tabular alumina wassplit and tested in five laboratories. Three operators in eachlaboratory tested th
38、e material four times each for a total oftwelve tests per laboratory.9.2 PrecisionPrecision and relative precision data at the95 % confidence level are given in Table 1.9.3 BiasNo justifiable statement on bias can be madesince the true value cannot be established by an acceptedreference method.10. K
39、eywords10.1 blotting cloth; boiling; bulk density; buret; granularrefractor; material; non-hydratable; sheenASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised t
40、hat determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapp
41、roved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you
42、feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual r
43、eprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).TABLE 1 Precision StatisticsPrecision:Average, x 3.53Standard within, Sr0.0164Deviation between, SR0.0182Repeatability interval, r 0.0459Reproducibility interval, R 0.0510Relative Precision:Average, x 3.53Coefficient of VariationWithin lab, Vr0.46Between lab, VR0.52Relative Repeatability, % r 1.30Relative Reproducibility, % R 1.45C 357 07 (2009)13