1、Designation: C595/C595M 151C595/C595M 16Standard Specification forBlended Hydraulic Cements1This standard is issued under the fixed designation C595/C595M; the number immediately following the designation indicates the yearof original adoption or, in the case of revision, the year of last revision.
2、A number in parentheses indicates the year of last reapproval.A superscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1 NOTECorrected table reference in 8.3 editorially in Augus
3、t 2015.1. Scope Scope*1.1 This specification pertains to blended hydraulic cements for both general and special applications, using slag, pozzolan,limestone, or some combination of these, with portland cement or portland cement clinker or slag with lime.NOTE 1This specification prescribes ingredient
4、s and proportions, with some performance requirements, whereas Performance Specification C1157is a hydraulic cement specification in which performance criteria alone govern the products and their acceptance.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as
5、 standard. The values stated in eachsystem may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from thetwo systems may result in non-conformance with the standard. Values in SI units or inch-pound units shall be obtained bymeasurement in SI
6、 units or inch-pound units or by appropriate conversion, using the Rules for Conversion and Rounding givenin IEEE/ASTM SI 10, of measurements made in other units or SI units. Values are stated in only SI units when inch-pound unitsare not used in practice.1.3 The text of this standard refers to note
7、s and footnotes, which provide explanatory material. These notes and footnotes(excluding those in tables and figures) are not requirements of the standard.2. Referenced Documents2.1 ASTM Standards:2C51 Terminology Relating to Lime and Limestone (as used by the Industry)C109/C109M Test Method for Com
8、pressive Strength of Hydraulic Cement Mortars (Using 2-in. or 50-mm Cube Specimens)C114 Test Methods for Chemical Analysis of Hydraulic CementC150 Specification for Portland CementC151 Test Method for Autoclave Expansion of Hydraulic CementC157/C157M Test Method for Length Change of Hardened Hydraul
9、ic-Cement Mortar and ConcreteC183 Practice for Sampling and the Amount of Testing of Hydraulic CementC185 Test Method for Air Content of Hydraulic Cement MortarC186 Test Method for Heat of Hydration of Hydraulic CementC187 Test Method for Amount of Water Required for Normal Consistency of Hydraulic
10、Cement PasteC188 Test Method for Density of Hydraulic CementC191 Test Methods for Time of Setting of Hydraulic Cement by Vicat NeedleC204 Test Methods for Fineness of Hydraulic Cement by Air-Permeability ApparatusC219 Terminology Relating to Hydraulic CementC226 Specification for Air-Entraining Addi
11、tions for Use in the Manufacture of Air-Entraining Hydraulic CementC227 Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method)C311 Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement ConcreteC430 Test Method for Fine
12、ness of Hydraulic Cement by the 45-m (No. 325) SieveC465 Specification for Processing Additions for Use in the Manufacture of Hydraulic Cements1 This specification is under the jurisdiction of ASTM Committee C01 on Cement and is the direct responsibility of Subcommittee C01.10 on Hydraulic Cements f
13、orGeneral Concrete Construction.Current edition approved July 1, 2015March 15, 2016. Published July 2015April 2016. Originally approved in 1967. Last previous edition approved in 20142015 asC595/C595M 14.C595/C595M 151. DOI: 10.1520/C0595_C0595M-15E01.10.1520/C0595_C0595M-16.2 For referencedASTM sta
14、ndards, visit theASTM website, www.astm.org, or contactASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.This document is not an ASTM standard and is intended only to provide the user of an
15、ASTM standard an indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as publish
16、ed by ASTM is to be considered the official document.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1C511 Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, an
17、d Water Storage Tanks Used in the Testing of HydraulicCements and ConcretesC563 Test Method for Approximation of Optimum SO3 in Hydraulic Cement Using Compressive StrengthC688 Specification for Functional Additions for Use in Hydraulic CementsC821 Specification for Lime for Use with PozzolansC1012 T
18、est Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate SolutionC1038 Test Method for Expansion of Hydraulic Cement Mortar Bars Stored in WaterC1157 Performance Specification for Hydraulic CementE11 Specification for Woven Wire Test Sieve Cloth and Test SievesE350 Test Methods
19、for Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and WroughtIronE1019 Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys byVarious Combustion and Fusion TechniquesIEEE/ASTM SI 10 Standard for U
20、se of the International System of Units (SI): the Modern Metric System2.2 CSA Standards:CSA A3004-D2 Determination of Total Organic Carbon in Limestone3. Terminology3.1 DefinitionsThe terms used in this specification are defined in Terminology C219, except for the following terms:3.1.1 binary blende
21、d cement, na blended hydraulic cement consisting of portland cement with either a slag, a pozzolan, ora limestone.3.1.2 slag, nthe term slag is used within this standard to denote either slag cement or granulated blast-furnace slag.3.1.3 ternary blended cement, na blended hydraulic cement consisting
22、 of portland cement with either a combination of twodifferent pozzolans, slag and a pozzolan, a pozzolan and a limestone, or a slag and a limestone.NOTE 2Relevant terms in Terminology C219 applicable to this standard include portland cement, portland-cement clinker, hydraulic cement, slagcement, gra
23、nulated blast-furnace slag, pozzolan, and calcium sulfate. Limestone is defined in Terminology C51.4. Classification4.1 This specification applies to the following types of blended cement that generally are intended for use as indicated.4.1.1 Blended hydraulic cements for general concrete constructi
24、on.4.1.1.1 Type ISPortland blast-furnace slag cement.4.1.1.2 Type IPPortland-pozzolan cement.4.1.1.3 Type ILPortland-limestone cement.4.1.1.4 Type ITTernary blended cement.4.2 Reporting:4.2.1 The naming practice for blended cements shall be made by adding the suffix (X) to the type designation under
25、 4.1.1, where(X) equals the targeted percentage of slag, pozzolan or limestone, in the product expressed as a whole number by mass of the finalblended product, within the allowable variation as stated in 15.3.4.2.2 The naming practice for ternary blended cements shall be made by adding the suffixes
26、(AX) and (BY) to the Type ITdesignation under 4.1.1, where:A is either “S” for slag, “P” for pozzolan, or“L” for limestone,whichever is present in larger amount by mass, andX is the targeted percentage by mass of constituent A, andB is either “S” for slag, “P” for pozzolan, or“L” for limestone, andY
27、 is the targeted percentage by mass of constituent B.Both X and Y values are expressed as a whole number by mass of the final blended product, within the allowable variation asstated in 15.3. If X and Y are the same, list the two constituents in alphabetical order by constituent type (limestone, poz
28、zolan,or slag).NOTE 3Examples of the naming practice in accordance with 4.2.1 and 4.2.2 are shown below (all percentages by mass):Binary blended cement with 80 % portland cement and 20 % slag= Type IS(20).Binary blended cement with 85 % portland cement and 15 % pozzolan= Type IP(15).Binary blended c
29、ement with 90 % portland cement and 10 % limestone= Type IL(10).Ternary blended cement with 70 % portland cement, 20 % slagC595/C595M 162and 10 % pozzolan = Type IT(S20)(P10).Ternary blended cement with 65 % portland cement, 25 % of onepozzolan and 10 % of another pozzolan = Type IT(P25)(P10).Ternar
30、y blended cement with 60 % portland cement and 20 % ofslag and 20 % pozzolan = Type IT(P20)(S20).Ternary blended cement with 80 % portland cement, 10 % limestoneand 10 % pozzolan = Type IT(L10)(P10).Ternary blended cement with 75 % portland cement, 15 % slagand 10 % limestone = Type IT(S15)(L10).4.2
31、.3 A simplified naming practice is used in this standard for practicality and clarity when referring to specific requirementsfor binary and ternary blended cements that are applicable to a range of products or in ternary blended cements when requirementsare applicable to only one constituent within
32、a specific range (%). (See Note 4.)NOTE 4Examples of the simplified naming practices in accordance with 4.2.3 are shown below:1) An example when requirements are applicable to a range of products can be found in Table 1, where the maximum SO3 content of 3 % applies to:binary blended cements with sla
33、g contents 70 %, indicated as IS(70); and ternary blended cements with a pozzolan content less than the slag contentand the slag content is less than 70 %, indicated as IT(PS70).2) An example when requirements are applicable to only one constituent within a specific range (%) of that constituent can
34、 be found in 9.2, wheretesting is required only when the slag content is 25 %. Because the requirement is based on the slag content only with no relation to the pozzolan orlimestone content, a simplified naming practice is employed and the range of ternary blended cements is indicated as Type IT(S25
35、).4.3 Special Properties:4.3.1 Air-entraining cement, when desired by the purchaser, shall be specified by adding the suffix (A) to the type designationunder 4.1.1.NOTE 5Agiven mass of blended cement has a larger absolute volume than the same mass of portland cement. This should be taken into consid
36、erationin purchasing cements and in proportioning concrete mixtures.4.3.2 Moderate heat of hydration, when desired by the purchaser, shall be specified by adding the suffix (MH) to the typedesignation under 4.1.1.4.3.3 Moderate sulfate resistance, when desired by the purchaser, shall be specified by
37、 adding the suffix (MS) to the typedesignation under 4.1.1.4.3.4 High sulfate resistance, when desired by the purchaser, shall be specified by adding the suffix (HS) to the type designationunder 4.1.1.4.3.5 Low heat of hydration, when desired by the purchaser, shall be specified by adding the suffix
38、 (LH) to the type designationunder 4.1.1.4.3.6 Resistance to alkali-silica reactive aggregate expansion, when desired by the purchaser, shall be specified by adding thesuffix (R) to the type designation under 4.1.1.NOTE 6Special characteristics attributable to slag, pozzolan or limestone will vary b
39、ased on quantities contained within the blended cements. TypeIT cements with greater than 5 % limestone and Type IL cements are not permitted as moderate (MS) or high (HS) sulfate resistance cements, pendingresults of further research.5. Ordering Information5.1 Orders for material under this specifi
40、cation shall include the following:5.1.1 Specification number,5.1.2 Type or types required,5.1.2.1 Indicate allowable slag, pozzolan, or limestone maximum or minimum percentage by mass, if required.5.1.3 Optional special properties required (see 4.3):5.1.3.1 MS if moderate sulfate resistance is requ
41、ired;5.1.3.2 HS if high sulfate resistance is required;TABLE 1 Chemical RequirementsCement TypeA ApplicableTest MethodIS(70),IT(PS70),IT(LS70)IS($70),IT(S$70)IP,IT(P$S),IT(P$L)IL,IT(L$S),IT(L$P)Magnesium oxide (MgO), max, % C114 . . . . . . 6.0 . . .Sulfate reported as SO3, max, %B C114 3.0 4.0 4.0
42、3.0Sulfide reported as S2-, max, % C114 2.0 2.0 . . . . . .Insoluble residue, max, %C C114 1.0 1.0 . . . . . .Loss on ignition, max, % C114 3.0D 4.0D 5.0D 10.0A The chemical requirements in this table are applicable to all air-entrained cement equivalents.B It is permissible to exceed the values in
43、the table for SO3 content, provided it has been demonstrated by Test Method C1038 that the cement with the increased SO3will not develop expansion exceeding 0.020 % at 14 days. When the manufacturer supplies cement under this provision, supporting data shall be supplied to the purchaser.See Note 9.C
44、 Insoluble residue maximum limit does not apply to ternary blended cements.D For ternary blended cements with limestone, loss on ignition is a maximum of 10.0 % by mass.C595/C595M 1635.1.3.3 MH if moderate heat of hydration is required;5.1.3.4 LH if low heat of hydration is required;5.1.3.5 R if res
45、istance to alkali-silica reactive aggregate expansion is required;5.1.3.6 A if air entraining is required;5.1.3.7 Accelerating addition, if required;5.1.3.8 Retarding addition, if required;5.1.3.9 Water reducing addition, if required;5.1.3.10 Water reducing and accelerating addition, if required; an
46、d5.1.3.11 Water reducing and retarding addition, if required.5.1.4 Certification, if desired (see Section 15).NOTE 7It is important to check for availability of various options. Some multiple options are mutually incompatible or unattainable.6. Materials6.1 Materials permitted to be used as ingredie
47、nts in cements manufactured to comply with this specification are:6.1.1 Portland CementFor purposes of this specification, portland cement meeting the requirements of Specification C150 issuitable. Portland cement or other hydraulic materials, or both, containing high free lime are not prohibited fr
48、om use as long asthe autoclave test limits for the blended cement are met.6.1.2 Portland Cement Clinker.6.1.3 SlagSlag shall be slag cement or granulated blast-furnace slag and comply with requirements in Section 9.6.1.4 PozzolanPozzolan shall comply with requirements in Section 9.6.1.5 LimestoneLim
49、estone, as defined in Terminology C51, shall be naturally occurring and comply with the requirementsindicated in 8.2.6.1.6 Hydrated LimeHydrated lime used as part of a blended cement shall meet the requirements of Specification C821,except that when interground in the production process there shall be no minimum fineness requirement.6.1.7 Air-Entraining AdditionWhen air-entraining cement is specified, an addition meeting the requirements of SpecificationC226 shall be used.6.1.8 When processing additions are used in the manufacture of cement, t