1、Designation: D97 11Designation: 15/95Standard Test Method forPour Point of Petroleum Products1This standard is issued under the fixed designation D97; the number immediately following the designation indicates the year of originaladoption or, in the case of revision, the year of last revision.Anumbe
2、r in parentheses indicates the year of last reapproval.Asuperscriptepsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This test method covers and is intended for use on anypetrol
3、eum product.2A procedure suitable for black specimens,cylinder stock, and nondistillate fuel oil is described in 8.8.Thecloud point procedure formerly part of this test method nowappears as Test Method D2500.1.2 Currently there is no ASTM test method for automatedTest Method D97 pour point measureme
4、nts.1.3 Several ASTM test methods offering alternative proce-dures for determining pour points using automatic apparatusare available. None of them share the same designation numberas Test Method D97. When an automatic instrument is used,the ASTM test method designation number specific to thetechniq
5、ue shall be reported with the results. A procedure fortesting the pour point of crude oils is described in Test MethodD5853.1.4 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.5 WARNINGMercury has been designated by manyregula
6、tory agencies as a hazardous material that can causecentral nervous system, kidney and liver damage. Mercury, orits vapor, may be hazardous to health and corrosive tomaterials. Caution should be taken when handling mercury andmercury containing products. See the applicable product Ma-terial Safety D
7、ata Sheet (MSDS) for details and EPAswebsitehttp:/www.epa.gov/mercury/faq.htmfor addi-tional information. Users should be aware that selling mercuryand/or mercury containing products into your state or countrymay be prohibited by law.1.6 This standard does not purport to address all of thesafety con
8、cerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3D117 Guide for Sampling, Test Methods,
9、 and Specificationsfor Electrical Insulating Oils of Petroleum OriginD396 Specification for Fuel OilsD2500 Test Method for Cloud Point of Petroleum ProductsD5853 Test Method for Pour Point of Crude OilsD6300 Practice for Determination of Precision and BiasData for Use in Test Methods for Petroleum P
10、roducts andLubricantsE1 Specification for ASTM Liquid-in-Glass Thermometers2.2 Energy Institute Standards:Specifications for IP Standard Thermometers43. Terminology3.1 Definitions:3.1.1 black oil, nlubricant containing asphaltic materials.Black oils are used in heavy-duty equipment applications, suc
11、has mining and quarrying, where extra adhesiveness is desired.3.1.2 cylinder stock, nlubricant for independently lubri-cated engine cylinders, such as those of steam engines and aircompressors. Cylinder stock are also used for lubrication ofvalves and other elements in the cylinder area.1This test m
12、ethod is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.07 on Flow Properties.Current edition approved June 1, 2011. Published July 2011. Originally approvedin 1927, replacing D47. Last previous edition approved in
13、 2009 as D9709. DOI:10.1520/D0097-11.In the IP, this test method is under the jurisdiction of the StandardizationCommittee. This test method was adopted as a joint ASTM-IP Standard in 1965.2Statements defining this test and its significance when applied to electricalinsulating oils of mineral origin
14、 will be found in Guide D117.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4Methods for Analysis and Testin
15、g, IP Standards for Petroleum and itsProducts, Part I, Vol 2.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.1.3 pour point, nin petroleum products, the lowesttemper
16、ature at which movement of the test specimen isobserved under prescribed conditions of test.3.1.4 residual fuel, na liquid fuel containing bottomsremaining from crude distillation or thermal cracking; some-times referred to as heavy fuel oil.3.1.4.1 DiscussionResidual fuels comprise Grades 4, 5,and
17、6 fuel oils, as defined in Specification D396.4. Summary of Test Method4.1 After preliminary heating, the sample is cooled at aspecified rate and examined at intervals of 3C for flowcharacteristics. The lowest temperature at which movement ofthe specimen is observed is recorded as the pour point.5.
18、Significance and Use5.1 The pour point of a petroleum specimen is an index ofthe lowest temperature of its utility for certain applications.6. Apparatus6.1 Test Jar, cylindrical, of clear glass, flat bottom, 33.2 to34.8-mm outside diameter, and 115 to 125 mm in height. Theinside diameter of the jar
19、can range from 30.0 to 32.4 mm,within the constraint that the wall thickness be no greater than1.6 mm. The jar shall have a line to indicate a sample height 546 3 mm above the inside bottom. See Fig. 1.6.2 Thermometers, having the following ranges and con-forming to the requirements prescribed in Sp
20、ecification E1 forthermometers:Temperature ThermometerNumberThermometer Range ASTM IPHigh cloud and pour 38 to +50C 5C 1CLow cloud and pour 80 to +20C 6C 2CMelting point +32 to +127C 61C 63C6.2.1 Since separation of liquid column thermometers occa-sionally occurs and may escape detection, thermomete
21、rsshould be checked immediately prior to the test and used onlyif they prove accurate within 61C (for example ice point).6.3 Cork, to fit the test jar, bored centrally for the testthermometer.6.4 Jacket, watertight, cylindrical, metal, flat-bottomed, 1156 3-mm depth, with inside diameter of 44.2 to
22、45.8 mm. Itshall be supported in a vertical position in the cooling bath (see6.7) so that not more than 25 mm projects out of the coolingmedium, and shall be capable of being cleaned.6.5 Disk, cork or felt, 6 mm thick to fit loosely inside thejacket.6.6 Gasket, to fit snugly around the outside of th
23、e test jarand loosely inside the jacket. The gasket may be made ofrubber, leather, or other material that is elastic enough to clingto the test jar and hard enough to hold its shape. Its purpose isto prevent the test jar from touching the jacket.NOTEDimensions are in millimetres (not to scale).FIG.
24、1 Apparatus for Pour Point TestD971126.7 Bath or Baths, maintained at prescribed temperatureswith a firm support to hold the jacket vertical. The requiredbath temperatures may be obtained by refrigeration if avail-able, otherwise by suitable cooling mixtures. Cooling mixturescommonly used for bath t
25、emperatures down to those shown arein Table 1.7. Reagents and Materials7.1 The following solvents of technical grade are appropri-ate for low-temperature bath media.7.1.1 Acetone,(WarningExtremely flammable).7.1.2 Alcohol, Ethanol (WarningFlammable).7.1.3 Alcohol, Methanol (WarningFlammable. Vaporha
26、rmful).7.1.4 Petroleum Naphtha,(WarningCombustible. Vaporharmful).7.1.5 Solid Carbon Dioxide,(WarningExtremely cold78.5C).8. Procedure8.1 Pour the specimen into the test jar to the level mark.When necessary, heat the specimen in a bath until it is justsufficiently fluid to pour into the test jar.NOT
27、E 1It is known that some materials, when heated to a temperaturehigher than 45C during the preceding 24 h, do not yield the same pourpoint results as when they are kept at room temperature for 24 h prior totesting. Examples of materials which are known to show sensitivity tothermal history are resid
28、ual fuels, black oils, and cylinder stocks.8.1.1 Samples of residual fuels, black oils, and cylinderstocks which have been heated to a temperature higher than45C during the preceding 24 h, or when the thermal history ofthese sample types is not known, shall be kept at roomtemperature for 24 h before
29、 testing. Samples which are knownby the operator not to be sensitive to thermal history need notbe kept at room temperature for 24 h before testing.8.1.2 Experimental evidence supporting elimination of the24-h waiting period for some sample types is contained in aresearch report.58.2 Close the test
30、jar with the cork carrying the high-pourthermometer (5.2). In the case of pour points above 36C, usea higher range thermometer such as IP 63C or ASTM 61C.Adjust the position of the cork and thermometer so the cork fitstightly, the thermometer and the jar are coaxial, and thethermometer bulb is immer
31、sed so the beginning of the capillaryis 3 mm below the surface of the specimen.8.3 For the measurement of pour point, subject the speci-men in the test jar to the following preliminary treatment:8.3.1 Specimens Having Pour Points Above 33CHeatthe specimen without stirring to 9C above the expected po
32、urpoint, but to at least 45C, in a bath maintained at 12C abovethe expected pour point, but at least 48C. Transfer the test jarto a bath maintained at 24 6 1.5C and commence observa-tions for pour point. When using a liquid bath, ensure that theliquid level is between the fill mark on the test jar a
33、nd the topof the test jar.8.3.2 Specimens Having Pour Points of 33C andBelowHeat the specimen without stirring to at least 45C ina bath maintained at 48 6 1.5C. Transfer the test jar to a bathmaintained at 24 6 1.5C. When using a liquid bath, ensurethat the liquid level is between the fill mark on t
34、he test jar andthe top of the test jar. When the specimen temperature reaches27C, remove the high cloud and pour thermometer, and placethe low cloud and pour thermometer in position. Transfer thetest jar to the cooling bath (see 8.6.1).8.4 See that the disk, gasket, and the inside of the jacket arec
35、lean and dry. Place the disk in the bottom of the jacket. Place5Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D02-1377.TABLE 1 Cooling Mixtures and Bath TemperaturesCooling Mixture BathTemperatureIce and water 0 6 1.5CCrushed i
36、ce and sodium chloride crystals orAcetone or petroleum naphtha, or methanol or ethanol (seeSection 7) with solid carbon dioxide added to give the desiredtemperature18 6 1.5CAcetone or petroleum naphtha or methanol or ethanol (seeSection 7) with solid carbon dioxide added to give the desiredtemperatu
37、re33 6 1.5CAcetone or petroleum naphtha or methanol or ethanol (seeSection 7) with solid carbon dioxide added to give the desiredtemperature51 6 1.5CAcetone or petroleum naphtha or methanol or ethanol (seeSection 7) with solid carbon dioxide added to give the desiredtemperature69 6 1.5CD97113the gas
38、ket around the test jar, 25 mm from the bottom. Insertthe test jar in the jacket. Never place a jar directly into thecooling medium.8.5 After the specimen has cooled to allow the formation ofparaffin wax crystals, take great care not to disturb the mass ofspecimen nor permit the thermometer to shift
39、 in the specimen;any disturbance of the spongy network of wax crystals willlead to low and erroneous results.8.6 Pour points are expressed in integers that are positive ornegative multiples of 3C. Begin to examine the appearance ofthe specimen when the temperature of the specimen is 9Cabove the expe
40、cted pour point (estimated as a multiple of 3C).At each test thermometer reading that is a multiple of 3Cbelow the starting temperature remove the test jar from thejacket. To remove condensed moisture that limits visibilitywipe the surface with a clean cloth moistened in alcohol(ethanol or methanol)
41、. Tilt the jar just enough to ascertainwhether there is a movement of the specimen in the test jar. Ifmovement of specimen in the test jar is noted, then replace thetest jar immediately in the jacket and repeat a test for flow atthe next temperature, 3C lower. Typically, the completeoperation of rem
42、oval, wiping, and replacement shall requirenot more than 3 s.8.6.1 If the specimen has not ceased to flow when itstemperature has reached 27C, transfer the test jar to a jacket ina cooling bath maintained at 0 6 1.5C. As the specimencontinues to get colder, transfer the test jar to a jacket in thene
43、xt lower temperature cooling bath in accordance with Table2.8.6.2 If the specimen in the jar does not show movementwhen tilted, hold the jar in a horizontal position for 5 s, asnoted by an accurate timing device, and observe the specimencarefully. If the specimen shows any signs of movement before5
44、s has passed, replace the test jar immediately in the jacket andrepeat a test for flow at the next temperature, 3C lower.8.7 Continue in this manner until a point is reached at whichthe specimen shows no movement when the test jar is held ina horizontal position for 5 s. Record the observed reading
45、ofthe test thermometer.8.8 For black specimen, cylinder stock, and nondistillatefuel specimen, the result obtained by the procedure describedin 8.1 through 8.7 is the upper (maximum) pour point. Ifrequired, determine the lower (minimum) pour point by heat-ing the sample while stirring, to 105C, pour
46、ing it into the jar,and determining the pour point as described in 8.4 through 8.7.8.9 Some specifications allow for a pass/fail test or havepour point limits at temperatures not divisible by 3C. In thesecases, it is acceptable practice to conduct the pour pointmeasurement according to the following
47、 schedule: Begin toexamine the appearance of the specimen when the temperatureof the specimen is 9C above the specification pour point.Continue observations at 3C intervals as described in 8.6 and8.7 until the specification temperature is reached. Report thesample as passing or failing the specifica
48、tion limit.9. Calculation and Report9.1 Add 3C to the temperature recorded in 8.7 and reportthe result as the Pour Point, ASTM D97. For black oil, and soforth, add 3C to the temperature recorded in 8.7 and report theresult as Upper Pour Point, ASTM D97, or Lower Pour Point,ASTM D97, as required.10.
49、Precision and Bias10.1 PrecisionThe precision of this test method as deter-mined by the statistical examination of the interlaboratory testresults is as follows:10.1.1 Lubricating Oil:610.1.1.1 RepeatabilityThe difference between successivetest results, obtained by the same operator using the sameapparatus under constant operating conditions on identical testmaterial would, in the long run, in the normal and correctoperation of this test method, exceed 6C only in one case intwenty. Differences greater than this sho