1、Designation: D3342 90 (Reapproved 2012)Standard Test Method forDispersion Stability of New (Unused) Rolling OilDispersions in Water1This standard is issued under the fixed designation D3342; the number immediately following the designation indicates the year oforiginal adoption or, in the case of re
2、vision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers determination of the dispersionstability of dispersions of rolling oils in
3、 water. It is applicableto oils whose water dispersions are stable under moderateagitation, but which show at least some separation uponstanding quiescent for12 h, by rising of the oil particles.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are includ
4、ed in thisstandard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to
5、use. For specificwarning statements, see 6.2, A2.1, and A2.5.2. Referenced Documents2.1 ASTM Standards:2D1126 Test Method for Hardness in WaterD1293 Test Methods for pH of Water3. Summary of Test Method3.1 The rolling oil is dispersed in a standard test water, in astandard container, under standard
6、conditions of time, agita-tion, and concentration. When the agitation is stopped, theresulting decrease in oil concentration at a specified point nearthe bottom of the container is measured at certain time intervalsand plotted.4. Significance and Use4.1 Each steel rolling mill and operation is parti
7、cular as tothe degree of stability of dispersion required to effect maxi-mum efficiency of lubrication and cooling. This test method isdesigned to differentiate between coolants for this use. Asimilar situation is encountered with aluminum rolling mills,but significant differences in designated sett
8、ling times berequired outside the parameter of times used herein. Precisiondata have only been obtained relative to metastable dispersionsfor steel mill rolling oils.5. Apparatus5.1 Mixing Beaker,3,45800 mL capacity, made of stainlesssteel, modified as shown in Annex A2.5.2 Combination Agitator and
9、Temperature Control De-vice.4,55.3 Babcock Centrifuge Bottles4,6The 165-mm cream testbottle, with 5 mL-neck permitting oil concentration readingsfrom 0 to 10 % is preferred. These bottles should be marked forfilling to the 50-mL level which will normally be found closeto the junction of body and nec
10、k. Sulfonation bottles may alsobe used.5.4 Centrifuge, capable of whirling the Babcock bottles atsufficient speed to give a clean separation of oil and waterunder the test conditions. A centrifuge giving a relativecentrifugal force (rcf) of 5009 at the bottle tips has been foundto give good separati
11、ons in 10 min.5.5 To calculate the rpm required to achieve the stated rcf,use the following formula:rpm 5 1335=rcf/d (1)where:rcf = relative centrifugal force,d = diameter of swing measured between tips of oppo-site tubes when in rotating position, mm, and1This test method is under the jurisdiction
12、of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.L0.04 on Metal Deformation Fluids and Lubricants.Current edition approved April 15, 2012. Published April 2012. Originallyapproved in 1990. Last previous edition approved in 2006 as D334290(
13、2006).DOI:10.1520/D3342-90R12.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The sole source of supply of t
14、he apparatus (beaker #2-584F) known to thecommittee at this time is Fisher Scientific.4If you are aware of alternative suppliers, please provide this information toASTM International Headquarters. Your comments will receive careful consider-ation at a meeting of the responsible technical committee,1
15、which you may attend.5The sole source of supply of the apparatus (the Porta-temp) known to thecommittee at this time is Precision Scientific Co.6The sole source of supply of the apparatus (cream test bottle No. 12-705 orsulfonation bottle No. 6-904) known to the committee at this time is FisherScien
16、tific.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.rpm = revolutions per minute.5.6 Stop Watch, or similar timing device.6. Reagents6.1 Buffered Synthetic Hard Water, prepared in accordancewith Annex A2.6.2 Sulfuric Acid, 30 vol %
17、 in water. Lower acid concen-trations may be used if clean separations are obtained.(WarningSulfuric acid is poison, corrosive, and a strongoxidizer.)7. Procedure7.1 The flow rate of the combination agitator and tempera-ture control device should be between 3500 and 4500 mL/min.The flow rate should
18、be measured with a piece of 6.35-mminside diameter bore plastic tubing temporarily attached to thepump outlet and removed after this measurement. During thetest, do not use attachments such as tubing, stopcocks, pinchclamps, etc. on the pump outlet.7.2 Add 4275 mL of test water to the beaker, instal
19、l theagitator-temperature control device, and adjust it for 60Ctemperature. When the water reaches this temperature, add225 mL of the rolling oil to be tested. (The oil sample shouldbe sufficiently agitated to assure complete mixing of oilcomponents. With most materials, sufficient heat to melt all
20、ofthe components will also be required, however, at no timeshould the temperature exceed 60C.) Continue controlledtemperature agitation for 30 min.7.3 While agitation continues, fill one Babcock bottle for anemulsion concentration control test, as follows: Open the pinchclamp on the beaker sample ta
21、p for 2 to 3 s. Discard about20 mL of emulsion to flush the tap, and attempt to come ascleanly as possible to the end. Close the pinch clamp, place thehose tip in a Babcock bottle, and fill it at a rapid flow rate to the50-mL mark.7.4 Stop agitation and restart the stop watch at zero time.Fill Babco
22、ck bottles as described above at 30 s and 1, 2, 4, 8,16, and 32 min elapsed time. It is permissible to stop samplingsooner or later (such as at 16 or 64 min) if such data aredesired, but earlier sample times may not be omitted even forvery stable emulsions, because the sampling process slightlyaffec
23、ts further settling rates. For each sample, purge the sampletap several seconds ahead of time so that filling the Babcockbottle starts at the correct time.7.5 Fill each Babcock bottle to the upper graduation linewith 30 vol% sulfuric acid. Swirl while filling. Spin in thecentrifuge for 10 min, or un
24、til a clean separation is obtained. Itmay be necessary to use a different mineral acid or to heat thefilled Babcock bottles to facilitate a clean separation. (Ifhowever, none of these methods results in a clean separation,the test method cannot be considered applicable for thatparticular oil.) Read
25、the difference in levels in terms of theBabcock bottle calibration scale at the top and bottom of the oillayer.8. Calculation8.1 For the sample bottle taken as a control during agitation,calculate the percent of oil found. Since the calibrations on theneck of the Babcock bottle usually range from 0
26、to 50, andcorrespond to 10 % oil in this test method, the difference inscale reading between the top and bottom of the oil layerdivided by 5 equals the percent oil. If this result is not close to5 %, the results are suspect until repeat runs verify thereproducibility of the discrepancy. Significant
27、amounts ofwater soluble compounds in the oil sample might explain lowconcentrations, for example. If, by the end of the 30 minagitation period, any significant amount of free oil or invertedemulsion remains floating on the surface without being repeat-edly drawn down into the water layer, the oil is
28、 probably toodifficult to disperse for the test method to be applicable.8.2 For each sample taken after agitation was stopped,calculate the amount of oil found as a percent of the amountfound in the sample.8.3 A single number used to describe the rolling oil emul-sion stability is the slope of a str
29、aight line, fit by the method ofleast squares, to the base ten logarithms of both time, inminutes, and the measured concentrations in percent. Inpractice, to avoid taking the of zero, use the concentration plus1%.8.4 The estimate of the Slope b, for an experimental trial iseasily obtained by complet
30、ing the following worksheet.Log10TimeLog10Concentration+1%Time Actual Coded (X) (Y) XY0.5 0.30103 0.903091.0 0.0 0.602062.0 0.30103 0.301034.0 0.60206 0.08.0 0.90309 0.3010316.0 1.20412 0.6020632.0 1.50515 0.903098.5 Enter the log of the test result plus 1 on the appropriateline. Form the product of
31、 each coded time (X) and thecorresponding concentration (Y). Add the seven resultingvalues. The slope is then calculated by the following formula:b 5 (XY/2.53733 (2)9. Report9.1 The test result should be reported by the form in Fig. 1,or equivalent. Calculations of Slope b (see 8.4) are to be usedto
32、 test the precision of test method and define the stability ofthe dispersion by a single number.10. Precision and Bias10.1 Precision7The precision of the test method as ob-tained by statistical examination of interlaboratory test resultsis as follows:10.1.1 RepeatabilityThe difference between succes
33、sivetest results, obtained by the same operator with the sameapparatus under constant operating conditions on identical testmaterial, would in the long run, in the normal and correctoperation of the test method, exceed the following value onlyin one case in twenty:0.0736 slope7Supporting data have b
34、een filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D02-1108.D3342 90 (2012)210.1.2 ReproducibilityThe difference between two singleand independent results, obtained by different operators work-ing in different laboratories on identical test material, wou
35、ld inthe long run, in the normal and correct operation of the testmethod, exceed the following value in only one case in twenty:0.3028 slopeNOTE 1The precision statement is based on the results from sevenlaboratories on six samples (see Table 1).10.2 BiasSince there is no accepted reference material
36、suitable for bias determination of this test method, no statementon bias is being made.11. Keywords11.1 coolant; dispersion stability; emulsion; rolling oilANNEXES(Mandatory Information)A1. PREPARATION OF MIXING BEAKERA1.1 The mixing beaker3,4is a modification of a 5800-mLstainless beaker approximat
37、ely 185 mm in diameter by 220 mmhigh (see Fig. A1.1).A1.2 Apiece of 6.35 mm outside diameter by 0.89 mm wallstainless tube is cut to 50 mm length, and the ends freed ofburrs or other irregularities. It is then brazed horizontallythrough the wall of the beaker, such that its center line is25 mm above
38、 the inside floor of the beaker, and it projects 25mm inside the wall (see Fig. A1.1).A1.3 A rectangle of sheet metal, 28.5-mm high by about76-mm wide, is brazed to the top of the beaker, on the sideopposite the sample tap, to permit attaching the control device,at a standard location (see Fig. A1.1
39、).A1.4 A 76-mm piece of thin-walled rubber tube of suitableinside diameter to grip the 6.35-mm stainless tube, is slippedonto the outer end of that tube. It is fitted with a push-to-openspring-operated pinchcock, serving as a sampling valve.FIG. 1 Tentative Dispersion Stability Test Report FormTABLE
40、 1 Slope bLaboratory Test H I G K L JA 1 0.0 0.0031 0.9192 0.7188 0.4935 0.48222 0.0031 0.0 0.8757 0.6991 0.4986 0.4443B 1 0.0 0.0 0.5750 0.5264 0.7584 0.79382 0.0 0.0 0.5660 0.5410 0.6426 0.9548C 1 0.0274 0.0025 0.6133 0.8275 0.5725 0.60682 0.0046 0.0099 0.6759 0.8007 0.5949 0.4718D 1 0.0124 0.0513
41、 0.8456 0.7530 0.4856 0.34272 0.0500 0.0 0.8077 0.7399 0.4047 0.5714E 1 0.0169 0.0128 0.3988 0.5793 0.6145 0.69702 0.0237 0.0169 0.3832 0.6152 0.5540 0.6970F 1 0.0158 0.0154 0.6050 0.5580 0.6640 0.97342 0.0338 0.0097 0.6377 0.5653 0.9630 0.6779G 1 0.0428 0.0032 0.6393 0.5600 0.5111 0.46682 0.0301 0.
42、0041 0.6531 0.5856 0.5458 0.5017D3342 90 (2012)3A2. PREPARATION OF SYNTHETIC HARD WATERA2.1 Prepare CaCl2solution of 50 000-ppm hardness.From a freshly opened or carefully protected bottle of anhy-drous CaCl2, weigh out 55.5 g, and dissolve only in distilledwater in a 1-L volumetric flask. (WarningM
43、ay cause skinirritation.)A2.2 Prepare MgSO4solution of 50 000-ppm hardness,using 123.2 g of MgSO47H2O per litre.A2.3 Prepare NaHCO3solution at 50 000-ppm concentra-tion, using 50 g of anhydrous NaHCO3per litre.A2.4 For each litre of test water required, add to 994 mL ofdistilled water 3 mL of the Ca
44、Cl2solution, 2 mL of the MgSO4solution, and 1 mL of the NaHCO3solution. Use Test MethodD1126 to verify hardness, if desired.A2.5 Adjust the pH of the hard water to 7.0 using dilutehydrochloric acid. (WarningPoison. Corrosive. May be fatalif swallowed.) (See Test Methods D1293.)ASTM International tak
45、es no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own re
46、sponsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addres
47、sed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at th
48、e address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).FIG. A1.1 Mixing Beaker for Dispersion Stability TestD3342 90 (2012)4