ASTM D3675-2008 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source.pdf

上传人:bonesoil321 文档编号:515231 上传时间:2018-12-02 格式:PDF 页数:10 大小:166.65KB
下载 相关 举报
ASTM D3675-2008 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source.pdf_第1页
第1页 / 共10页
ASTM D3675-2008 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source.pdf_第2页
第2页 / 共10页
ASTM D3675-2008 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source.pdf_第3页
第3页 / 共10页
ASTM D3675-2008 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source.pdf_第4页
第4页 / 共10页
ASTM D3675-2008 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source.pdf_第5页
第5页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: D 3675 08Standard Test Method forSurface Flammability of Flexible Cellular Materials Using aRadiant Heat Energy Source1This standard is issued under the fixed designation D 3675; the number immediately following the designation indicates the year oforiginal adoption or, in the case of r

2、evision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This is a fire test response standard.1.2 This test method describes the measurement of surfacef

3、lammability of flexible cellular materials.1.3 This standard measures and describes the response ofmaterials, products, or assemblies to heat and flame undercontrolled conditions, but does not, by itself, incorporate allfactors required for fire hazard or fire risk assessment of thematerials, produc

4、ts, or assemblies under actual fire conditions.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regu

5、latory limitations prior to use.1.5 Fire testing of products and materials is inherentlyhazardous, and adequate safeguards for personnel and propertyshall be employed in conducting these tests. This test methodmay involve hazardous materials, operations and equipment.Specific information about hazar

6、ds is given in Section 7.NOTE 1There is no similar or equivalent ISO standard.1.6 The values stated in SI units are to be regarded as thestandard. The values stated in inch-pound units, in brackets, arefor information only and are approximations (see also IEEE/ASTM SI-10).2. Referenced Documents2.1

7、ASTM Standards:2E84 Test Method for Surface Burning Characteristics ofBuilding MaterialsE 162 Test Method for Surface Flammability of MaterialsUsing a Radiant Heat Energy SourceE 176 Terminology of Fire StandardsE 1317 Test Method for Flammability of Marine SurfaceFinishesE 1321 Test Method for Dete

8、rmining Material Ignition andFlame Spread PropertiesE 1546 Guide for Development of Fire-Hazard-AssessmentStandardsIEEE/ASTM SI-10 Standard for Use of the InternationalSystem of Units (SI): The Modern Metric System2.2 ISO Standards:3ISO 13943 Fire SafetyVocabulary3. Terminology3.1 Definitions:3.1.1

9、For definitions of terms used in this test method, referto the terminology contained in Terminology E 176 andISO 13943. In case of conflict, the definitions given in Termi-nology E 176 shall prevail.3.1.2 flame front, nthe leading edge of a flame propagat-ing through a gaseous mixture or across the

10、surface of a liquidor solid.3.2 Definitions of Terms Specific to This Standard:3.2.1 flashing, nflame fronts of three seconds or less induration.3.2.2 radiant panel index, Is, nthe product of the flamespread factor, Fsand the heat evolution factor, Q.4. Summary of Test Method4.1 This test method of

11、measuring surface flammability offlexible cellular materials employs a radiant panel heat sourceconsisting of a 300 by 460-mm (12 by 18-in.) panel in front ofwhich an inclined 150 by 460-mm (6 by 18-in.) specimen ofthe material is placed. The orientation of the specimen is suchthat ignition is force

12、d near its upper edge and the flame frontprogresses downward.4.2 Factors derived from the rate of progress of the flamefront and the rate of heat liberated by the material under test arecombined to provide a radiant panel index.5. Significance and Use5.1 This test method is intended for use when mea

13、suringsurface flammability of flexible cellular materials exposed tofire. The test method provides a laboratory test procedure for1This test method is under the jurisdiction of ASTM Committee D20 on Plasticsand is the direct responsibility of Subcommittee D20.30 on Thermal Properties.Current edition

14、 approved Aug. 1, 2008. Published September 2008. Originallyapproved in 1978. Last previous edition approved in 2005 as D 3675 - 05.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume inform

15、ation, refer to the standards Document Summary page onthe ASTM website.3Available from International Standardization Organization, P.O. Box 56,CH-1211; Geneva 20, Switzerland.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Bo

16、x C700, West Conshohocken, PA 19428-2959, United States.measuring and comparing the surface flammability of materialswhen exposed to a prescribed level of radiant heat energy. Thetest is conducted using specimens that are representative, to theextent possible, of the material or assembly being evalu

17、ated.For example, if an assembly is required to be tested, suchspecimens shall replicate the type and thickness of all thelayers present in the assembly being evaluated.5.2 The rate at which flames will travel along surfacesdepends upon the physical and thermal properties of thematerial, product, or

18、 assembly under test, the specimen mount-ing method and orientation, the type and level of fire or heatexposure, the availability of air, and properties of the surround-ing enclosure. (1-6)4, 55.3 Test Method E 162 is a generic version of this testmethod, using an apparatus that is substantially the

19、 same as theone used in this test method. However, Test Method E 162 isnormally intended for application to specimens other thanflexible cellular materials.5.3.1 The pilot burner in this test method is different fromthe pilot burner in Test Method E 162.5.4 In this procedure, the specimens are subje

20、cted to one ormore specific sets of laboratory fire test conditions. If differenttest conditions are substituted or the end-use conditions arechanged, it is not always possible by or from this test to predictchanges in the fire-test-response characteristics measured.Therefore, the results are valid

21、only for the fire test exposureconditions described in this procedure.5.5 If the test results obtained by this test method are to beconsidered as part of an overall assessment of fire hazard in abuilding or structure, then the criteria, concepts and proceduresincorporated into Guide E 1546 shall be

22、taken into consider-ation.6. Apparatus6.1 The apparatus shall be essentially as shown in Fig. 1 andshall include the following:6.1.1 Radiant Panel with Air and Gas SupplyThe radiantpanel shall consist of a porous refractory material verticallymounted in a cast iron frame, exposing a radiating surfac

23、e of300 by 460 mm (12 by 18 in.) and shall be capable of operatingat temperatures up to 820C (1500F). The panel shall beequipped (see Fig. 1) with a venturi-type aspirator for mixinggas and air at approximately atmospheric pressure; a centrifu-gal blower, or equivalent, to provide 47 dm3/s (100 ft3/

24、min) airat a pressure of 0.7 kPa (2.8 in. water); an air filter to preventdust from obstructing the panel pores; a pressure regulator anda control and shut-off valve for the gas supply.6.1.2 Specimen HolderThe specimen holder shall con-form in shape and dimension to Fig. 2 and be constructed fromhea

25、t-resistant chromium steel, or other suitable non-combustible material which will not be affected by the heatinput during the test. Observation marks shall be filed on thesurface of the specimen holder to correspond with 75-mm(3-in.) interval lines on the specimen.6.1.2.1 The calibration process (se

26、e A1.2) shall be con-ducted with the specimen holder to be used in the tests toensure that the physical characteristics of the constructionmaterial do not affect the test results.6.1.3 Framework for Support of the Specimen HolderTheframework shall have two transverse rods of stainless steel,each 12.

27、5 mm 6 3.0 mm (0.5 6 0.13 in.) in diameter, with astop to center the specimen holder directly in front of theradiant panel. The support and bracing members shall beconstructed from metal stock. Since the angle of the specimenand its position with respect to the panel are critical, theframework dimen

28、sions specifying these conditions shall bewithin 3.0 mm (0.13 in.) of the values given in Fig. 1.6.1.4 Pilot BurnerThe pilot burner shall be a porcelaintube 203-230 mm (8-9 in.) in length, nominally 6.3 mm (0.25in.) in diameter, with two holes 1.5 6 0.1 mm (0.059 6 0.004in.) in diameter equally spac

29、ed in the tube (see Fig. 3). Theburner shall be mounted horizontally and at an angle of 15 to20 to the intersection of the horizontal plane of the burner withthe plane of the specimen with the outlet end of the burnerspaced 32 6 2 mm (1.25 6 0.1 in.) from the specimen (see Fig.3). The pilot shall pr

30、ovide a 150 to 180-mm (6 to 7-in.) flameof acetylene gas premixed with air in an aspirating type fitting.Properly adjusted, the pilot flame shall have 25-mm (1-in.)inner blue cones and should impinge on the upper centralsurface of the specimen within 13 mm (0.5 in.) of the edge ofthe specimen suppor

31、t frame. Flow rates of 0.015 dm3/s (0.032ft3/min) of acetylene and 0.075 dm3/s (0.16 ft3/min) of air havebeen found to provide the desired flame.6.1.5 StackThe stack shall be made from nominally1.0-mm (0.040-in.) sheet steel with shape and dimensions asshown in Fig. 1. The position of the stack with

32、 respect to thespecimen and radiant heat panel shall also comply with therequirements of Fig. 1.6.1.6 ThermocouplesEight thermocouples of equal resis-tance and connected in parallel shall be mounted in the stackand supported with porcelain insulators as indicated in Fig. 1and Fig. 4. The thermocoupl

33、es shall be Chromel-Alumel TypeK, shielded against high heat with insulation resisting up to1200C (2190F), and with wire gages in the range of0.36-0.51 mm (0.14-0.20 in.) (30 AWG-24 AWG) diameter.The mean stack thermocouple temperature rise for unit heatinput rate of the calibration burner, b, shall

34、 be determinedperiodically for the specific test apparatus, using the procedurein A1.2.6.1.7 Automatic Potentiometer RecorderAn automaticpotentiometer recorder in the range from 38 to 538C (100 to1000F) shall be installed to record the temperature variationof the stack thermocouples as described in

35、6.1.6. Alternatively,a computerized data acquisition system shall be permitted to beused. The data acquisition system shall have facilities to recordthe temperature output from the thermopile. The data acquisi-tion system shall have an accuracy of 0.01 % of the maximumtemperature to be measured. Whi

36、chever system is used, it shallbe capable of recording, or printing, data at least every 5 s fora minimum of 1 h. For cases where preliminary tests indicaterapid flame spread, a system shall be used capable of acquiringdata fast enough to ensure adequate results (see 11.6).4The boldface numbers in p

37、arentheses refer to a list of references at the end ofthis standard.5Also see Test Method E 162.D36750826.1.8 HoodA hood with exhaust blower placed over thestack is required. The blower shall produce a velocity thatadequately exhausts all of the smoke and combustion gases.The blower shall be capable

38、 of producing a velocity of 0.5 m/s(100 ft/min, 30 m/min) at the top of the stack with the radiantpanel not operating, or approximately 1.3 m/s (250 ft/min) withthe radiant panel at operating temperature. The velocity is notcritical for flame spread measurements provided a stackthermocouple calibrat

39、ion is performed (see 6.1.6 and A1.2) forthe established test conditions. The hood surfaces shall clearthe top and sides of the stack by a minimum of 250 mm (10 in.)and 190 mm (7.5 in.), respectively.6.1.9 Radiation PyrometerThe radiation pyrometer forstandardizing the thermal output of the panel sh

40、all be suitablefor viewing a circular area 250 mm (10 in.) in diameter at arange of about 1.2 m (4 ft). It shall be calibrated over theoperating black body temperature range in accordance with theprocedure described in Annex A1.Metric Equivalentsmm in. mm in.1.0 0.040 152 612.712 241 91216.058 457 1

41、822.278 492 193844 134 19.1 by 19.34 by3451 2 38by32 112 by 11464 212 305 by 457 12 by 1871 2.8 330 by 483 13 by 19102 4 51by51by3.2 2by2by18111 438 1.3 by 514 by 914 0.050 by 2014 by 36121 434100 cfm 47.21 litres/sFIG. 1 Details of Construction of Test EquipmentD36750836.1.10 Portable Potentiometer

42、The electrical output of theradiation pyrometer shall be monitored by means of a poten-tiometer provided with a millivolt range suitable for use withthe radiation pyrometer described in 6.1.9. Alternatively, thedata shall be permitted to be recorded with a computerized dataacquisition unit, as discu

43、ssed in 6.1.7.6.1.11 TimerThe timer shall be calibrated to read to 0.01min to record the time of events during the test.7. Hazards7.1 Safeguards shall be installed in the panel fuel supplysystem to guard against a gas air fuel explosion in the testchamber. Potential safeguards include, but are not l

44、imited to,one or more of the following: a gas feed cut-off activated whenthe air supply fails; a flame sensor directed at the panel surfacethat stops fuel flow when the panel flame goes out; and a heatdetector mounted in contact with the radiant panel plenum thatis activated when the panel temperatu

45、re exceeds safe limits.Manual reset is a requirement of any safeguard system used.7.2 The exhaust system must be so designed and operatedthat the laboratory environment is protected from smoke andgas. The operator shall be instructed on ways to minimizeexposure to combustion products by following so

46、und safetyand industrial hygiene practices. For example, ensure that theexhaust system is working properly and wear appropriateclothing including gloves, safety glasses, breathing apparatus(when hazardous fumes are expected).Metric Equivalentsmm in. mm in.19.034 159 61425 1 433 175832 114 460 181876

47、 3 1.6 by 19 by 533116 by34 by 21133 514FIG. 2 Specimen HolderD36750847.3 During this test, very high heat fluxes and high tempera-tures are generated that are capable of igniting some clothingfollowing even brief exposures. Precautions shall be taken toavoid ignitions of this type.8. Test Specimens

48、8.1 The test specimens shall be 150 by 460 by 25 mm (6 by18 by 1.0 in.). Materials produced at less than 25-mm thicknessshall be tested at the maximum thickness produced. Materialsproduced at less than 460 mm (18 in.) in length shall bemounted in series to provide a specimen of the proper length.No

49、segment of the specimen shall be less than 150 mm (6 in.)in length.8.2 After cutting or sawing to prepare test specimens, careshall be taken to remove dust and particles from the testspecimen surface.8.3 The back and sides of the test specimen shall bewrapped with aluminum foil, the shiny side against the testspecimen, 0.05 mm (0.002 in.) in thickness. High densityinorganic reinforced cement board, 6.4 mm (0.25 in.) inthickness, shall be used as backing. The test specimen shall beretained in the specimen holder by a 150 by 460-mm (6 by18-

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1